项目名称: 非均质量子器件Schr?dinger-Poisson系统多尺度分析与算法研究
项目编号: No.11426216
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 张磊
作者单位: 中国人民解放军后勤学院
项目金额: 3万元
中文摘要: 非均质量子器件Schr?dinger-Poisson系统的数值计算对于新型量子器件的研发和应用具有重要意义,但其数值算法的设计具有挑战性。本项目研究非均质量子器件Schr?dinger-Poisson系统的多尺度分析与计算。首先,将针对这一非线性问题提出解的多尺度渐近展开式,并给出收敛阶证明。然后,基于多尺度渐近展开,发展有效的数值算法并分析其收敛性。接着,根据本项目提出的数值算法,编写计算程序,并通过数值实验来检验理论分析的正确性以及数值算法的有效性。最后,将应用本项目开发的计算程序,实现几种典型非均质量子器件的多尺度模拟。
中文关键词: 非均质量子器件;Schr?dinger-Poisson系统;多尺度分析;有限元方法;非线性
英文摘要: Numerical calculations for the Schr?dinger-Poisson system in heterogeneous quantum devices are of great significance to the developments and applications of new quantum devices. However, it is challenging to design numerical algorithms for the Schr?dinger-Poisson system in heterogeneous quantum devices. This project will discuss the multiscale analysis and computation of the Schr?dinger-Poisson system in heterogeneous quantum devices. First, the multiscale asymptotic expansions of the solutions for the above nonlinear equations will be presented and the convergence result with an explicit rate will be derived. Secondly, the efficient numerical method based on the multiscale asymptotic expansions will be advanced and the convergence will be analyzed. Thirdly, the numerical method will be implemented with programming and numerical experiments will be then carried out to validate the above theoretical results. In final, multiscale simulations for several typical heterogeneous quantum devices will be realized using the computing program which will be developed in this project.
英文关键词: heterogeneous quantum devices;Schr?dinger-Poisson system;multiscale analysis;finite element method;nonlinear