Consensus protocols play an important role in the study of distributed algorithms. In this paper, we study the effect of bias on two popular consensus protocols, namely, the {\em voter rule} and the {\em 2-choices rule} with binary opinions. We assume that agents with opinion $1$ update their opinion with a probability $q_1$ strictly less than the probability $q_0$ with which update occurs for agents with opinion $0$. We call opinion $1$ as the superior opinion and our interest is to study the conditions under which the network reaches consensus on this opinion. We assume that the agents are located on the vertices of a regular expander graph with $n$ vertices. We show that for the voter rule, consensus is achieved on the superior opinion in $O(\log n)$ time with high probability even if system starts with only $\Omega(\log n)$ agents having the superior opinion. This is in sharp contrast to the classical voter rule where consensus is achieved in $O(n)$ time and the probability of achieving consensus on any particular opinion is directly proportional to the initial number of agents with that opinion. For the 2-choices rule, we show that consensus is achieved on the superior opinion in $O(\log n)$ time with high probability when the initial proportion of agents with the superior opinion is above a certain threshold. We explicitly characterise this threshold as a function of the strength of the bias and the spectral properties of the graph. We show that for the biased version of the 2-choice rule this threshold can be significantly less than that for the unbiased version of the same rule. Our techniques involve using sharp probabilistic bounds on the drift to characterise the Markovian dynamics of the system.


翻译:共识协议在分布式算法的研究中起着重要作用 。 在本文中, 我们研究对两种全民共识协议, 即 ~em选民规则} 和 ~em 2- choice 规则) 的偏差的影响。 我们假设, 持有意见的代理商在使用二进制意见时, 以0.1美元来更新他们的意见, 严格地说, 严格地说, 低于对持有意见的代理商进行更新的概率 $_0美元 。 我们要求以优等意见来理解网络, 我们的兴趣是研究网络就这一意见达成共识的条件。 我们假设, 代理商在使用定期扩展图时, 位于定期扩展图的顶级。 我们显示, 在选民规则的顶级规则上, 直率比 高级代表的初定值值值要低。 我们的首席代理商在使用这一规则时, 直略地显示, 我们的高级代表的初定值比值比 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员