Hyperspectral images, which record the electromagnetic spectrum for a pixel in the image of a scene, often store hundreds of channels per pixel and contain an order of magnitude more information than a typical similarly-sized color image. Consequently, concomitant with the decreasing cost of capturing these images, there is a need to develop efficient techniques for storing, transmitting, and analyzing hyperspectral images. This paper develops a method for hyperspectral image compression using implicit neural representations where a multilayer perceptron network $\Phi_\theta$ with sinusoidal activation functions ``learns'' to map pixel locations to pixel intensities for a given hyperspectral image $I$. $\Phi_\theta$ thus acts as a compressed encoding of this image. The original image is reconstructed by evaluating $\Phi_\theta$ at each pixel location. We have evaluated our method on four benchmarks -- Indian Pines, Cuprite, Pavia University, and Jasper Ridge -- and we show the proposed method achieves better compression than JPEG, JPEG2000, and PCA-DCT at low bitrates.


翻译:超光谱图像记录了像素图像中的电磁频谱,通常每个像素存储数百个频道,并包含比典型的类似彩色图像更多的数量级信息。 因此,随着捕获这些图像的成本不断下降,有必要开发高效的存储、传输和分析超光谱图像的技术。 本文开发了一种使用隐性神经表征的超光谱图像压缩方法, 多层透视网络($\ Phi ⁇ theta$), 并带有正弦振动功能的“ learns” 将像素位置映射成超光谱图像的像素强度。 因此, $\ Phi ⁇ theta$ 作为该图像的压缩编码。 原始图像通过对每个像素位置的 $\ Phi ⁇ theta$进行评估来重建。 我们用四种基准评估了我们的方法 -- 印度派恩、 丘特、 帕维亚大学 和 贾斯利 Ridge -- 我们展示了拟议方法比 JPEG、 JEG 2000 和低比拉特的五氯苯-DCT 得到了更好的压缩。

0
下载
关闭预览

相关内容

深度前馈网络(deep feedforward network),也叫做前馈神经网络(feedforward neural network)或者多层感知机(multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数 f^∗ 。例如,对于分类器,y = f^∗ (x)将输入x映射到一个类别y。前馈网络定义了一个映射y = f (x; θ),并且学习参数θ的值使它能够得到最佳的函数近似。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员