In this paper, we introduce a new approach to address the challenge of generalization in hyperspectral anomaly detection (AD). Our method eliminates the need for adjusting parameters or retraining on new test scenes as required by most existing methods. Employing an image-level training paradigm, we achieve a general anomaly enhancement network for hyperspectral AD that only needs to be trained once. Trained on a set of anomaly-free hyperspectral images with random masks, our network can learn the spatial context characteristics between anomalies and background in an unsupervised way. Additionally, a plug-and-play model selection module is proposed to search for a spatial-spectral transform domain that is more suitable for AD task than the original data. To establish a unified benchmark to comprehensively evaluate our method and existing methods, we develop a large-scale hyperspectral AD dataset (HAD100) that includes 100 real test scenes with diverse anomaly targets. In comparison experiments, we combine our network with a parameter-free detector and achieve the optimal balance between detection accuracy and inference speed among state-of-the-art AD methods. Experimental results also show that our method still achieves competitive performance when the training and test set are captured by different sensor devices. Our code is available at https://github.com/ZhaoxuLi123/AETNet.


翻译:在本文中,我们介绍了一种解决高光谱异常检测中泛化问题的新方法。我们的方法消除了大部分现有方法需要在新的测试场景下调整参数或重新训练的需要。采用以图像为级别的训练模式,我们实现了一个通用的高光谱异常增强网络,只需要训练一次。在使用随机掩模预处理的一组无异常高光谱图像上训练,我们的网络可以无监督地学习异常与背景之间的空间上下文特征。此外,我们还提出了一个插入式模型选择模块,来搜索比原始数据更适合于异常检测任务的空间-谱变换领域。为了建立一个统一的基准,全面评估我们的方法和现有方法,我们开发了一个大规模的高光谱异常检测数据集(HAD100),其中包括100个具有不同异常目标的真实测试场景。在比较实验中,将我们的网络与一个无需参数的探测器相结合,实现了在最先进的AD方法中,检测精度和推理速度之间的最佳平衡。实验结果还表明,即使训练集和测试集由不同的传感器设备捕获,我们的方法仍然可以获得竞争性能。我们的代码可在https://github.com/ZhaoxuLi123/AETNet获得。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员