Neural-network-based single image depth prediction (SIDP) is a challenging task where the goal is to predict the scene's per-pixel depth at test time. Since the problem, by definition, is ill-posed, the fundamental goal is to come up with an approach that can reliably model the scene depth from a set of training examples. In the pursuit of perfect depth estimation, most existing state-of-the-art learning techniques predict a single scalar depth value per-pixel. Yet, it is well-known that the trained model has accuracy limits and can predict imprecise depth. Therefore, an SIDP approach must be mindful of the expected depth variations in the model's prediction at test time. Accordingly, we introduce an approach that performs continuous modeling of per-pixel depth, where we can predict and reason about the per-pixel depth and its distribution. To this end, we model per-pixel scene depth using a multivariate Gaussian distribution. Moreover, contrary to the existing uncertainty modeling methods -- in the same spirit, where per-pixel depth is assumed to be independent, we introduce per-pixel covariance modeling that encodes its depth dependency w.r.t all the scene points. Unfortunately, per-pixel depth covariance modeling leads to a computationally expensive continuous loss function, which we solve efficiently using the learned low-rank approximation of the overall covariance matrix. Notably, when tested on benchmark datasets such as KITTI, NYU, and SUN-RGB-D, the SIDP model obtained by optimizing our loss function shows state-of-the-art results. Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.


翻译:神经网络的单幅图像深度预测(SIDP)是一项具有挑战性的任务,旨在在测试时间预测场景的每个像素深度。由于该问题本质上是无法解决的,基本目标是提出一种方法,可以从一组训练示例可靠地建模场景深度。在追求完美深度估计时,大多数现有的先进学习技术预测每个像素的单个标量深度值。然而,众所周知,训练好的模型具有精度限制,并且可能预测不准确的深度。因此,在测试时间,SIDP方法必须考虑模型预测的预期深度变化。因此,我们介绍了一种方法,可以对每个像素深度进行连续建模,其中我们可以预测并推断每个像素深度及其分布。为此,我们使用多元高斯分布模型每个像素场景深度。此外,与现有的不确定性建模方法相反,其中假定每个像素深度是独立的,我们引入每个像素协方差建模,该建模编码其深度依赖性,以及所有场景点。不幸的是,每个像素深度协方差建模导致计算代价昂贵的连续损失函数,我们通过学习整个协方差矩阵的低秩近似来有效地解决了这个问题。值得注意的是,当在基准数据集(如KITTI,NYU和SUN-RGB-D)上进行测试时,通过优化我们的损失函数获得的SIDP模型显示出最先进的结果。我们方法的准确性(命名为MG)位于KITTI深度预测基准排行榜的前列。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【CVPR2022】端到端实时矢量边缘提取(E2EC)
专知会员服务
14+阅读 · 2022年4月14日
ECCV 2022 | 底层视觉新任务:Blind Image Decomposition
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【CVPR2022】端到端实时矢量边缘提取(E2EC)
专知会员服务
14+阅读 · 2022年4月14日
相关资讯
ECCV 2022 | 底层视觉新任务:Blind Image Decomposition
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员