Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.
翻译:共振探测的目的是从一组相关图像中发现常见和突出的表面。为了完成这一任务,我们提出了一个具有注意图集群集的新型适应性图形变异网络(GCAGC),已经做出了三大贡献,并实验性地证明具有实质性的实际优点。首先,我们提议了一个图形变异网络设计,以提取信息线索来描述内部和临时通信的特点。第二,我们开发了一个关注图组合算法,以不受监督的方式区分所有突出的地表物体的共同物体。第三,我们提出了一个与编码器-分解器结构的统一框架,以联合培训和优化图形变异网络、注意图集以及最终至终端的共振探测解码器。我们评估了我们拟议的GCGAG关于三种相异性探测基准数据集(iCoseg、Cosal2015和COCO-SEG)的方法。我们的GC方法在大多数数据库的状态上取得了显著改进。