In this paper we propose a deep learning based numerical scheme for strongly coupled FBSDE, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the means square error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDE, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.
翻译:在本文中,我们提出了一个深层次的基于深层次学习的、由随机控制的FBSDE数字方案,这是对深层的BSDE方法的修改,在这种方法中,后方方程式的初始值不是一个自由参数,而新的损失函数是控制问题成本的加权总和,以及一个与终端状态中手段方差错相吻合的差异术语。我们用一个数字示例显示,古典深层BSDE方法直接延伸至FBSDE, 无法解决简单的线性赤道控制问题, 并激发新方法发挥作用的原因。 在对时间连续和时间分离控制问题精确控制的常规性和约束性假设下, 我们为我们的方法提供了一种错误分析。 我们从经验上表明,该方法会汇合三个不同的问题, 一个是无法直接扩展深层 BSDE方法的。