项目名称: 分数阶微分-代数方程的高精度数值算法
项目编号: No.11426141
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 黄健飞
作者单位: 青岛大学
项目金额: 3万元
中文摘要: 由于分数阶微积分算子具有非局部性,因此分数阶微积分能用于更精确地建模在科学和工程中具有记忆性和遗传性的材料和过程。最近,分数阶微分-代数方程已成功地运用到约束动力系统的研究中,使得对该类方程的数值求解更加迫切。本申请项目将采用谱延迟校正技巧和分析结构力学方法来构造分数阶微分-代数方程的高精度格式,给出相应的理论分析,并且用Newton-Krylov法来提高计算效率。最后,通过数值实验来验证格式的优越性。
中文关键词: 分数阶微分方程;谱方法;Runge-Kutta法;统一数值格式;
英文摘要: Due to the non-local property of fractional differential/integral operator, the fractional calculus can be more precisely used to model various materials and processes having the memory and hereditary properties in scientific and engineering fields. Recently, fractional differential-algebraic equations has gained a wide applications in the research of constrained dynamical system, it makes more urgent to study the numerical solutions of this kind of equations. This program will adopt spectral deferred correction techniques and analytical structural mechanics methods to construct a high accuracy method for fractional differential-algebraic equations, and carry out the corresponding theoretical analysis. To improve computation efficiency, the resulting preconditioned nonlinear system is solved by using Newton-Krylov schemes. Finally, numerical experiments will be given to verify the advantages of the proposed methods.
英文关键词: fractional differential equation;spectral method;Runge-Kutta method;unified numerical method;