Training dataset biases are by far the most scrutinized factors when explaining algorithmic biases of neural networks. In contrast, hyperparameters related to the neural network architecture, e.g., the number of layers or choice of activation functions, have largely been ignored even though different network parameterizations are known to induce different implicit biases over learned features. For example, convolutional kernel size has been shown to bias CNNs towards different frequencies. In order to study the effect of these hyperparameters, we designed a causal framework for linking an architectural hyperparameter to algorithmic bias. Our framework is experimental, in that several versions of a network are trained with an intervention to a specific hyperparameter, and the resulting causal effect of this choice on performance bias is measured. We focused on the causal relationship between sensitivity to high-frequency image details and face analysis classification performance across different subpopulations (race/gender). In this work, we show that modifying a CNN hyperparameter (convolutional kernel size), even in one layer of a CNN, will not only change a fundamental characteristic of the learned features (frequency content) but that this change can vary significantly across data subgroups (race/gender populations) leading to biased generalization performance even in the presence of a balanced dataset.


翻译:在解释神经网络的算法偏差时,培训数据偏差是迄今为止最仔细审查的因素。相反,与神经网络结构有关的超参数,例如,层数或激活功能的选择,尽管不同的网络参数化已知会对所学特征产生不同的隐含偏差,但在很大程度上被忽略。例如,进化内核大小显示有偏向CNN不同频率的偏向。为了研究这些超参数的影响,我们设计了一个将建筑超参数与算法偏差联系起来的因果框架。我们的框架是实验性的,一个网络的若干版本经过干预的干预,对特定的超参数进行了培训,并测量了这一选择对性能偏差产生的因果效应。我们侧重于对高频图像细节的敏感性和对不同子群群(种族/性别)的面级分析性能之间的因果关系。在这项工作中,我们表明,修改CNN超参数(进化内核大小)不仅改变所学特征的基本特征(频率内容),而且这种变化甚至会大大改变整个数据分组的偏向性。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
19+阅读 · 2021年2月4日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员