Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.
翻译:在网络采矿的节点分类任务中,成功地应用了图变网络(GCNs),然而,以邻里汇总为基础的大多数模型通常是浅的,缺乏“绘图集合”机制,使模型无法获得足够的全球信息。为了扩大可接受域,我们提议建立一个新型的深等级图变网络(H-GCN),用于半监督节点分类。H-GCN首先反复将结构上与超节点相似的节点汇总起来,然后将粗略图改进为恢复每个节点的原代表点。拟议的粗略图不仅只是汇总一或两点邻间信息,而且还扩大了每个节点的可接受域,因此可以了解更多的全球信息。对公共数据集进行的全面实验表明拟议方法对州级方法的有效性。值得注意的是,当只提供少量标签样本时,我们的模型取得了显著的改进。