Unsupervised Domain Adaptation (UDA) for object detection aims to adapt a model trained on a source domain to detect instances from a new target domain for which annotations are not available. Different from traditional approaches, we propose ConfMix, the first method that introduces a sample mixing strategy based on region-level detection confidence for adaptive object detector learning. We mix the local region of the target sample that corresponds to the most confident pseudo detections with a source image, and apply an additional consistency loss term to gradually adapt towards the target data distribution. In order to robustly define a confidence score for a region, we exploit the confidence score per pseudo detection that accounts for both the detector-dependent confidence and the bounding box uncertainty. Moreover, we propose a novel pseudo labelling scheme that progressively filters the pseudo target detections using the confidence metric that varies from a loose to strict manner along the training. We perform extensive experiments with three datasets, achieving state-of-the-art performance in two of them and approaching the supervised target model performance in the other. Code is available at: https://github.com/giuliomattolin/ConfMix.
翻译:用于物体探测的无监督域适应(UDA)旨在调整一个在源域上受过培训的模型,以便从没有说明的新目标域中检测没有说明的事例。不同于传统方法,我们提议ConfMix,这是引入基于区域一级检测信任的样本混合战略以用于适应性物体探测器学习的第一种方法。我们将目标样本中与最可靠的伪检测相对应的当地区域与源图像相混合,并适用额外的一致性损失术语,以逐步适应目标数据分布。为了为区域强有力地确定一个信任分,我们利用每个伪检测的可信度评分,其中既考虑到探测器依赖的信任度,又考虑到捆绑盒不确定性。此外,我们提出一个新的假标签计划,利用培训中从宽到严格的方式不同的信任度来筛选假目标检测。我们用三个数据集进行广泛的实验,在其中两个数据集中达到最先进的性能,并接近另一个数据集的监督目标模型性能。代码见:https://github.com/giuliomatlin/ConfMix。