主题: Exploring Categorical Regularization for Domain Adaptive Object Detection
摘要: 在本文中,我们解决了域自适应对象检测问题,其中主要挑战在于源域和目标域之间的显着域间隙。先前的工作试图使图像级别和实例级别的转换明确对齐,以最终将域差异最小化。但是,它们仍然忽略了跨域匹配关键图像区域和重要实例,这将严重影响域偏移缓解。在这项工作中,我们提出了一个简单但有效的分类正则化框架来缓解此问题。它可以作为即插即用组件应用于一系列领域自适应快速R-CNN方法,这些方法在处理领域自适应检测方面非常重要。具体地,通过将图像级多标签分类器集成到检测主干上,由于分类方式的定位能力较弱,我们可以获得与分类信息相对应的稀疏但至关重要的图像区域。同时,在实例级别,我们利用图像级别预测(通过分类器)和实例级别预测(通过检测头)之间的分类一致性作为规则化因子,以自动寻找目标域的硬对齐实例。各种域移位方案的大量实验表明,与原始的域自适应快速R-CNN检测器相比,我们的方法获得了显着的性能提升。此外,定性的可视化和分析可以证明我们的方法参加针对领域适应的关键区域/实例的能力。