近年来,自适应目标检测的研究取得了令人瞩目的成果。尽管对抗性自适应极大地增强了特征表示的可迁移性,但对目标检测器的特征鉴别能力的研究却很少。此外,由于目标的复杂组合和域之间的场景布局的差异,在对抗性适应中,可迁移性和可辨别性可能会产生矛盾。本文提出了一种层级可迁移性校准网络(HTCN),该网络通过对特征表示的可迁移性进行分级(局部区域/图像/实例)校准来协调可迁移性和可识别性。该模型由三部分组成:(1)输入插值加权对抗性训练(iwati),通过重新加权插值后的图像级特征,增强了全局识别力;(2)上下文感知实例级对齐(context -aware Instance-Level Alignment, CILA)模块,该模块通过捕获实例级特征与实例级特征对齐的全局上下文信息之间的潜在互补效应,增强了局部识别能力;(3)校准局部可迁移性的局部特征掩码,为后续判别模式对齐提供语义指导。实验结果表明,在基准数据集上,HTCN的性能明显优于最先进的方法。

成为VIP会员查看完整内容
0
20

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目: Continual Learning of Object Instances

摘要: 我们建议实例持续学习——一种将持续学习的概念应用于区分相同对象类别的实例的任务的方法。我们特别关注car对象,并通过度量学习逐步学会区分car实例与其他实例。我们从评估当前的技术开始我们的论文。在现有的方法中,灾难性遗忘是显而易见的,我们提出了两个补救措施。首先,通过归一化交叉熵对度量学习进行正则化。其次,我们使用合成数据传输来扩充现有的模型。我们在三个大型数据集上进行了大量的实验,使用了两种不同的体系结构,采用了五种不同的持续学习方法,结果表明,标准化的交叉熵和合成转移可以减少现有技术中的遗忘。

成为VIP会员查看完整内容
0
20

主题: Exploring Categorical Regularization for Domain Adaptive Object Detection

摘要: 在本文中,我们解决了域自适应对象检测问题,其中主要挑战在于源域和目标域之间的显着域间隙。先前的工作试图使图像级别和实例级别的转换明确对齐,以最终将域差异最小化。但是,它们仍然忽略了跨域匹配关键图像区域和重要实例,这将严重影响域偏移缓解。在这项工作中,我们提出了一个简单但有效的分类正则化框架来缓解此问题。它可以作为即插即用组件应用于一系列领域自适应快速R-CNN方法,这些方法在处理领域自适应检测方面非常重要。具体地,通过将​​图像级多标签分类器集成到检测主干上,由于分类方式的定位能力较弱,我们可以获得与分类信息相对应的稀疏但至关重要的图像区域。同时,在实例级别,我们利用图像级别预测(通过分类器)和实例级别预测(通过检测头)之间的分类一致性作为规则化因子,以自动寻找目标域的硬对齐实例。各种域移位方案的大量实验表明,与原始的域自适应快速R-CNN检测器相比,我们的方法获得了显着的性能提升。此外,定性的可视化和分析可以证明我们的方法参加针对领域适应的关键区域/实例的能力。

成为VIP会员查看完整内容
0
32

主题: Weakly-Supervised Salient Object Detection via Scribble Annotations

摘要: 与费力的逐像素密集标记相比,这种方法更容易通过涂抹来标记数据,仅花费1-2秒即可标记一张图像。然而,尚未有人探索使用可划线标签来学习显着物体检测。在本文中,我们提出了一种弱监督的显着物体检测模型,以从此类注释中学习显着性。为此,我们首先使用乱码对现有的大型显着物体检测数据集进行重新标记,即S-DUTS数据集。由于对象的结构和详细信息不能通过乱写识别,因此直接训练带有乱写的标签将导致边界位置局限性的显着性图。为了缓解这个问题,我们提出了一个辅助的边缘检测任务来明确地定位对象边缘,并提出了门控结构感知损失以将约束置于要恢复的结构范围上。此外,我们设计了一种涂鸦增强方案来迭代地整合我们的涂鸦注释,然后将其作为监督来学习高质量的显着性图。我们提出了一种新的度量标准,称为显着性结构测量,用于测量预测显着性图的结构对齐方式,这与人类的感知更加一致。在六个基准数据集上进行的大量实验表明,我们的方法不仅优于现有的弱监督/无监督方法,而且与几种完全监督的最新模型相提并论。

成为VIP会员查看完整内容
0
32

题目: Context-Transformer: Tackling Object Confusion for Few-Shot Detection

摘要:

小样本目标检测是一个具有挑战性但又很现实的场景,只有少数带注释的训练图像可用于训练检测器。处理这个问题的一个流行的方法是迁移学习,对在源域基准上预先训练的检测器进行微调。然而,由于训练样本的数据多样性较低,这种转移的检测器往往不能识别目标域中的新对象。为了解决这一问题,我们提出了一个新颖的上下文转换器:一个简洁的深层传输框架。具体来说,Context-Transformer可以有效地利用源域对象知识作为指导,并自动地从目标域中的少量训练图像中挖掘上下文。然后,自适应地整合这些相关线索,增强检测器的识别能力,以减少在小样本场景下的目标混淆。此外,上下文转换器灵活地嵌入到流行的ssd风格的检测器中,这使得它成为端到端小样本学习的即插即用模块。最后,我们评估了上下文转换器对小样本检测和增量小样本检测的挑战性设置。实验结果表明,我们的框架比目前最先进的方法有更好的性能。

成为VIP会员查看完整内容
0
45

论文主题: Recent Advances in Deep Learning for Object Detection

论文摘要: 目标检测是计算机视觉中的基本视觉识别问题,并且在过去的几十年中已得到广泛研究。目标检测指的是在给定图像中找到具有精确定位的特定目标,并为每个目标分配一个对应的类标签。由于基于深度学习的图像分类取得了巨大的成功,因此近年来已经积极研究了使用深度学习的对象检测技术。在本文中,我们对深度学习中视觉对象检测的最新进展进行了全面的调查。通过复习文献中最近的大量相关工作,我们系统地分析了现有的目标检测框架并将调查分为三个主要部分:(i)检测组件,(ii)学习策略(iii)应用程序和基准。在调查中,我们详细介绍了影响检测性能的各种因素,例如检测器体系结构,功能学习,建议生成,采样策略等。最后,我们讨论了一些未来的方向,以促进和刺激未来的视觉对象检测研究。与深度学习。

成为VIP会员查看完整内容
0
68

We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories cf. prior works on zero-shot classification. We follow a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets - MSCOCO and VisualGenome and discuss extensive empirical results to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.

0
6
下载
预览
小贴士
相关VIP内容
相关资讯
相关论文
Tao Kong,Fuchun Sun,Huaping Liu,Yuning Jiang,Jianbo Shi
5+阅读 · 2019年4月8日
Speeding-up Object Detection Training for Robotics with FALKON
Elisa Maiettini,Giulia Pasquale,Lorenzo Rosasco,Lorenzo Natale
6+阅读 · 2018年8月27日
Han Hu,Jiayuan Gu,Zheng Zhang,Jifeng Dai,Yichen Wei
3+阅读 · 2018年6月14日
Ryota Yoshihashi,Tu Tuan Trinh,Rei Kawakami,Shaodi You,Makoto Iida,Takeshi Naemura
3+阅读 · 2018年5月15日
Ankan Bansal,Karan Sikka,Gaurav Sharma,Rama Chellappa,Ajay Divakaran
6+阅读 · 2018年4月12日
Hao Wang,Qilong Wang,Mingqi Gao,Peihua Li,Wangmeng Zuo
5+阅读 · 2018年4月2日
Hongyu Xu,Xutao Lv,Xiaoyu Wang,Zhou Ren,Navaneeth Bodla,Rama Chellappa
3+阅读 · 2018年3月27日
Jiayuan Gu,Han Hu,Liwei Wang,Yichen Wei,Jifeng Dai
4+阅读 · 2018年3月19日
Qianhui Luo,Huifang Ma,Yue Wang,Li Tang,Rong Xiong
8+阅读 · 2018年2月21日
Fanyi Xiao,Yong Jae Lee
4+阅读 · 2017年12月18日
Top