Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
翻译:对象检测通常假定培训和测试数据来自相同的分布,但这种分布错配将会导致显著的性能下降。在这项工作中,我们的目标是提高对象检测的跨域稳健性。我们处理两个层面的域变换:1)图像级变换,如图像样式、光化等,2)图像级变换,如物体外观、大小等。我们根据最新最先进的快速R-CNN模型构建了我们的方法,并在图像水平和实例水平上设计了两个域适应组件,以缩小域差异。两个域的调整组成部分以H-diverence理论为基础,通过以对抗性培训方式学习域分级器加以实施。不同级别的域变换者通过一致性调整得到进一步加强,以学习快速R-CN模型中的域内变区域建议网络(RPN)。我们利用包括城市景象、KITTI、SIM10K等在内的多个新提议的方法评估了我们新提出的办法,以缩小域域域图显示在变化中拟议域域域间办法的实效。