Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

9
下载
关闭预览

相关内容

R-CNN的全称是Region-CNN,它可以说是是第一个成功将深度学习应用到目标检测上的算法。传统的目标检测方法大多以图像识别为基础。 一般可以在图片上使用穷举法选出所所有物体可能出现的区域框,对这些区域框提取特征并使用图像识别方法分类, 得到所有分类成功的区域后,通过非极大值抑制(Non-maximumsuppression)输出结果。

In this paper, we tackle the domain adaptive object detection problem, where the main challenge lies in significant domain gaps between source and target domains. Previous work seeks to plainly align image-level and instance-level shifts to eventually minimize the domain discrepancy. However, they still overlook to match crucial image regions and important instances across domains, which will strongly affect domain shift mitigation. In this work, we propose a simple but effective categorical regularization framework for alleviating this issue. It can be applied as a plug-and-play component on a series of Domain Adaptive Faster R-CNN methods which are prominent for dealing with domain adaptive detection. Specifically, by integrating an image-level multi-label classifier upon the detection backbone, we can obtain the sparse but crucial image regions corresponding to categorical information, thanks to the weakly localization ability of the classification manner. Meanwhile, at the instance level, we leverage the categorical consistency between image-level predictions (by the classifier) and instance-level predictions (by the detection head) as a regularization factor to automatically hunt for the hard aligned instances of target domains. Extensive experiments of various domain shift scenarios show that our method obtains a significant performance gain over original Domain Adaptive Faster R-CNN detectors. Furthermore, qualitative visualization and analyses can demonstrate the ability of our method for attending on the key regions/instances targeting on domain adaptation. Our code is open-source and available at \url{https://github.com/Megvii-Nanjing/CR-DA-DET}.

0
3
下载
预览

Compared with model architectures, the training process, which is also crucial to the success of detectors, has received relatively less attention in object detection. In this work, we carefully revisit the standard training practice of detectors, and find that the detection performance is often limited by the imbalance during the training process, which generally consists in three levels - sample level, feature level, and objective level. To mitigate the adverse effects caused thereby, we propose Libra R-CNN, a simple but effective framework towards balanced learning for object detection. It integrates three novel components: IoU-balanced sampling, balanced feature pyramid, and balanced L1 loss, respectively for reducing the imbalance at sample, feature, and objective level. Benefitted from the overall balanced design, Libra R-CNN significantly improves the detection performance. Without bells and whistles, it achieves 2.5 points and 2.0 points higher Average Precision (AP) than FPN Faster R-CNN and RetinaNet respectively on MSCOCO.

0
6
下载
预览

To mitigate the detection performance drop caused by domain shift, we aim to develop a novel few-shot adaptation approach that requires only a few target domain images with limited bounding box annotations. To this end, we first observe several significant challenges. First, the target domain data is highly insufficient, making most existing domain adaptation methods ineffective. Second, object detection involves simultaneous localization and classification, further complicating the model adaptation process. Third, the model suffers from over-adaptation (similar to overfitting when training with a few data example) and instability risk that may lead to degraded detection performance in the target domain. To address these challenges, we first introduce a pairing mechanism over source and target features to alleviate the issue of insufficient target domain samples. We then propose a bi-level module to adapt the source trained detector to the target domain: 1) the split pooling based image level adaptation module uniformly extracts and aligns paired local patch features over locations, with different scale and aspect ratio; 2) the instance level adaptation module semantically aligns paired object features while avoids inter-class confusion. Meanwhile, a source model feature regularization (SMFR) is applied to stabilize the adaptation process of the two modules. Combining these contributions gives a novel few-shot adaptive Faster-RCNN framework, termed FAFRCNN, which effectively adapts to target domain with a few labeled samples. Experiments with multiple datasets show that our model achieves new state-of-the-art performance under both the interested few-shot domain adaptation(FDA) and unsupervised domain adaptation(UDA) setting.

0
3
下载
预览

We propose an approach for unsupervised adaptation of object detectors from label-rich to label-poor domains which can significantly reduce annotation costs associated with detection. Recently, approaches that align distributions of source and target images using an adversarial loss have been proven effective for adapting object classifiers. However, for object detection, fully matching the entire distributions of source and target images to each other at the global image level may fail, as domains could have distinct scene layouts and different combinations of objects. On the other hand, strong matching of local features such as texture and color makes sense, as it does not change category level semantics. This motivates us to propose a novel approach for detector adaptation based on strong local alignment and weak global alignment. Our key contribution is the weak alignment model, which focuses the adversarial alignment loss on images that are globally similar and puts less emphasis on aligning images that are globally dissimilar. Additionally, we design the strong domain alignment model to only look at local receptive fields of the feature map. We empirically verify the effectiveness of our approach on several detection datasets comprising both large and small domain shifts.

0
5
下载
预览

Object detectors tend to perform poorly in new or open domains, and require exhaustive yet costly annotations from fully labeled datasets. We aim at benefiting from several datasets with different categories but without additional labelling, not only to increase the number of categories detected, but also to take advantage from transfer learning and to enhance domain independence. Our dataset merging procedure starts with training several initial Faster R-CNN on the different datasets while considering the complementary datasets' images for domain adaptation. Similarly to self-training methods, the predictions of these initial detectors mitigate the missing annotations on the complementary datasets. The final OMNIA Faster R-CNN is trained with all categories on the union of the datasets enriched by predictions. The joint training handles unsafe targets with a new classification loss called SoftSig in a softly supervised way. Experimental results show that in the case of fashion detection for images in the wild, merging Modanet with COCO increases the final performance from 45.5% to 57.4%. Applying our soft distillation to the task of detection with domain shift on Cityscapes enables to beat the state-of-the-art by 5.3 points. We hope that our methodology could unlock object detection for real-world applications without immense datasets.

0
4
下载
预览

There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.

0
4
下载
预览

We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories as in prior works on zero-shot classification. We present a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets - MSCOCO and VisualGenome, and present extensive empirical results in both the traditional and generalized zero-shot settings to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.

0
8
下载
预览

Object detection is a fundamental and challenging problem in aerial and satellite image analysis. More recently, a two-stage detector Faster R-CNN is proposed and demonstrated to be a promising tool for object detection in optical remote sensing images, while the sparse and dense characteristic of objects in remote sensing images is complexity. It is unreasonable to treat all images with the same region proposal strategy, and this treatment limits the performance of two-stage detectors. In this paper, we propose a novel and effective approach, named deep adaptive proposal network (DAPNet), address this complexity characteristic of object by learning a new category prior network (CPN) on the basis of the existing Faster R-CNN architecture. Moreover, the candidate regions produced by DAPNet model are different from the traditional region proposal network (RPN), DAPNet predicts the detail category of each candidate region. And these candidate regions combine the object number, which generated by the category prior network to achieve a suitable number of candidate boxes for each image. These candidate boxes can satisfy detection tasks in sparse and dense scenes. The performance of the proposed framework has been evaluated on the challenging NWPU VHR-10 data set. Experimental results demonstrate the superiority of the proposed framework to the state-of-the-art.

0
5
下载
预览

In this paper, we propose an efficient and fast object detector which can process hundreds of frames per second. To achieve this goal we investigate three main aspects of the object detection framework: network architecture, loss function and training data (labeled and unlabeled). In order to obtain compact network architecture, we introduce various improvements, based on recent work, to develop an architecture which is computationally light-weight and achieves a reasonable performance. To further improve the performance, while keeping the complexity same, we utilize distillation loss function. Using distillation loss we transfer the knowledge of a more accurate teacher network to proposed light-weight student network. We propose various innovations to make distillation efficient for the proposed one stage detector pipeline: objectness scaled distillation loss, feature map non-maximal suppression and a single unified distillation loss function for detection. Finally, building upon the distillation loss, we explore how much can we push the performance by utilizing the unlabeled data. We train our model with unlabeled data using the soft labels of the teacher network. Our final network consists of 10x fewer parameters than the VGG based object detection network and it achieves a speed of more than 200 FPS and proposed changes improve the detection accuracy by 14 mAP over the baseline on Pascal dataset.

0
5
下载
预览

We explore object discovery and detector adaptation based on unlabeled video sequences captured from a mobile platform. We propose a fully automatic approach for object mining from video which builds upon a generic object tracking approach. By applying this method to three large video datasets from autonomous driving and mobile robotics scenarios, we demonstrate its robustness and generality. Based on the object mining results, we propose a novel approach for unsupervised object discovery by appearance-based clustering. We show that this approach successfully discovers interesting objects relevant to driving scenarios. In addition, we perform self-supervised detector adaptation in order to improve detection performance on the KITTI dataset for existing categories. Our approach has direct relevance for enabling large-scale object learning for autonomous driving.

0
3
下载
预览
小贴士
相关论文
Exploring Categorical Regularization for Domain Adaptive Object Detection
Chang-Dong Xu,Xing-Ran Zhao,Xin Jin,Xiu-Shen Wei
3+阅读 · 2020年3月20日
Jiangmiao Pang,Kai Chen,Jianping Shi,Huajun Feng,Wanli Ouyang,Dahua Lin
6+阅读 · 2019年4月4日
Few-shot Adaptive Faster R-CNN
Tao Wang,Xiaopeng Zhang,Li Yuan,Jiashi Feng
3+阅读 · 2019年3月22日
Kuniaki Saito,Yoshitaka Ushiku,Tatsuya Harada,Kate Saenko
5+阅读 · 2018年12月12日
OMNIA Faster R-CNN: Detection in the wild through dataset merging and soft distillation
Alexandre Rame,Emilien Garreau,Hedi Ben-Younes,Charles Ollion
4+阅读 · 2018年12月6日
Ting-Wu Chin,Chia-Lin Yu,Matthew Halpern,Hasan Genc,Shiao-Li Tsao,Vijay Janapa Reddi
4+阅读 · 2018年10月4日
Zero-Shot Object Detection
Ankan Bansal,Karan Sikka,Gaurav Sharma,Rama Chellappa,Ajay Divakaran
8+阅读 · 2018年7月27日
Deep Adaptive Proposal Network for Object Detection in Optical Remote Sensing Images
Lin Cheng,Xu Liu,Lingling Li,Licheng Jiao,Xu Tang
5+阅读 · 2018年7月19日
Rakesh Mehta,Cemalettin Ozturk
5+阅读 · 2018年5月16日
Aljoša Ošep,Paul Voigtlaender,Jonathon Luiten,Stefan Breuers,Bastian Leibe
3+阅读 · 2017年12月23日
相关VIP内容
专知会员服务
40+阅读 · 2020年5月25日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
13+阅读 · 2018年8月29日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
17+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top