Our goal in this paper is to exploit heteroscedastic temperature scaling as a calibration strategy for out of distribution (OOD) detection. Heteroscedasticity here refers to the fact that the optimal temperature parameter for each sample can be different, as opposed to conventional approaches that use the same value for the entire distribution. To enable this, we propose a new training strategy called anchoring that can estimate appropriate temperature values for each sample, leading to state-of-the-art OOD detection performance across several benchmarks. Using NTK theory, we show that this temperature function estimate is closely linked to the epistemic uncertainty of the classifier, which explains its behavior. In contrast to some of the best-performing OOD detection approaches, our method does not require exposure to additional outlier datasets, custom calibration objectives, or model ensembling. Through empirical studies with different OOD detection settings -- far OOD, near OOD, and semantically coherent OOD - we establish a highly effective OOD detection approach. Code to reproduce our results is available at github.com/LLNL/AMP


翻译:本文中我们的目标是利用热摄氏温度缩放作为分流( OOD) 检测的校准策略。 这里的热摄氏度是指每个样本的最佳温度参数可能不同这一事实, 而不是对整个分布使用相同价值的常规方法。 为了实现这个目标, 我们提议一个新的培训战略, 称为锚定, 可以估计每个样本的适当温度值, 从而导致在多个基准中进行最先进的 OOOD 检测。 我们使用NTK 理论, 表明这一温度函数估计与分类器的缩影不确定性密切相关, 从而解释其行为。 与一些最佳 OOD 检测方法相比, 我们的方法并不要求接触额外的外部数据集、 定制校准目标或模型组合。 我们通过不同 OOD 检测环境的经验研究 -- -- 远OOD, 靠近OOD, 和 语系一致 OOD - 我们建立了一种非常有效的 OOD 检测方法。 复制我们结果的代码可以在 github. com/ LL/ AMPM 上查到。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
0+阅读 · 2023年2月2日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员