项目名称: 向水性基因IHR1整合脱落酸途径调控拟南芥主根伸长应答水分胁迫的网络途径及其分子机理

项目编号: No.91317307

项目类型: 重大研究计划

立项/批准年度: 2014

项目学科: 微生物学、植物学

项目作者: 张建华

作者单位: 香港中文大学深圳研究院

项目金额: 200万元

中文摘要: 干旱胁迫影响植物的生长发育,是我国农业生产的主要限制因子之一。土壤干旱在一定程度上可促进主根的伸长生长,同时伸长的主根能向着含水丰富的土壤层生长,植物研究者称这一现象为根系的“向水性”,但对其机理和干旱促进主根的伸长生长之间的关系知之甚少。我们前期的工作已筛选出拟南芥强向水性突变体ihr1,并克隆出向水性基因IHR1。本研究拟采用转录组深度测序、无凝胶-质谱蛋白组检测、蛋白沉降技术和根系非损伤微测等先进技术,以野生型拟南芥Col-0和向水性突变体ihr1为研究材料,以ABA调控主根根尖伸长应答水分胁迫的向水性适应过程为切入点,系统和深入地探讨“向水性基因IHR1整合脱落酸途径调控拟南芥主根伸长应答水分胁迫的网络作用途径及其分子机理”。本研究的结果能为通过遗传技术调控根系充分利用土壤水分提供理论依据与手段,以缓解我国水资源紧张对农业生产的影响和减轻土壤干旱带来的环境压力,因此具有重要意义。

中文关键词: 水分胁迫;向水性;根生长;分子调控网络;拟南芥

英文摘要: Water stress is one of the major limiting factors for plant growth and development. It has been known for many years that moderate soil drying can enhance the elongation growth of primary roots. Such enhanced root growth can follow a direction in response to a moisture gradient under the water-stress, also called hydrotropism. While plant responses to water stress have been well studied, we know very little about the relationship between drying-enhanced root growth and the hydrotropism. Our earlier work has identified an Arabidopsis mutant, ihr1(Improved Hydrotropic Response 1) showing strong hydrotropism and cloned the gene involved. Here we propose to use some advanced technologies (RNA-seq, gel-free MS proteomics, pull-down, transgenic method, mutant method and others) and comprehensively investigate the network pathways and its mechanisms of IHR1 in integrating the ABA modulation for maintaining primary root elongation under water stress. The output of the study shall enable us to understand how the root tip processes water-stress signals that are capable of regulating primary root elongation to obtain water from soil, with the potential to improve plant tolerance to soil drying.

英文关键词: water stress;hydrotropism;root growth;network pathways;Arabidopsis

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】MSDN: 零样本学习的互语义蒸馏网络
专知会员服务
20+阅读 · 2022年3月8日
城市大脑案例集(2022),114页pdf
专知会员服务
112+阅读 · 2022年1月10日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
29+阅读 · 2021年4月10日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2018年4月6日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员