Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift. Specifically, UDA methods try to align the source and target representations to improve the generalization on the target domain. Further, UDA methods work under the assumption that the source data is accessible during the adaptation process. However, in real-world scenarios, the labelled source data is often restricted due to privacy regulations, data transmission constraints, or proprietary data concerns. The Source-Free Domain Adaptation (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data. In this paper, we explore the SFDA setting for the task of adaptive object detection. To this end, we propose a novel training strategy for adapting a source-trained object detector to the target domain without source data. More precisely, we design a novel contrastive loss to enhance the target representations by exploiting the objects relations for a given target domain input. These object instance relations are modelled using an Instance Relation Graph (IRG) network, which are then used to guide the contrastive representation learning. In addition, we utilize a student-teacher based knowledge distillation strategy to avoid overfitting to the noisy pseudo-labels generated by the source-trained model. Extensive experiments on multiple object detection benchmark datasets show that the proposed approach is able to efficiently adapt source-trained object detectors to the target domain, outperforming previous state-of-the-art domain adaptive detection methods. Code is available at https://github.com/Vibashan/irg-sfda.
翻译:不受监督的域适应(UDA)是解决域变问题的一种有效方法。 具体地说, UDA 方法试图调整源和目标表示方式, 以改进目标域的概括性。 此外, UDA 的方法假设源数据在适应过程中可以获得。 然而, 在现实世界情景中, 标签源数据往往由于隐私监管、数据传输限制或专有数据问题而受到限制。 无源域适应(SFDA) 设置的目的是通过调整目标域的源培训模式来缓解这些关切,而无需访问源数据。 在本文件中,我们探索 SFDA 用于适应性物体探测任务的域域设置。 为此,我们提出一个新的培训战略,使经过源培训的物体探测器在没有源数据的情况下适应目标域。 更准确地说,我们设计了新的对比性损失,通过利用对象关系来改进目标域内输入。 这些对象实例关系正在模拟一种经源调整的校正性校正模型(IRG),然后用来指导对比性目标显示的显示。 此外,我们利用一个经过源内校正的校准性测试方法, 显示基于校正的域域域域校正的校正的校正的校正的校正的校正方法, 将校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正法方法, 校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正方法正在的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正法