Deep learning has achieved notable success in 3D object detection with the advent of large-scale point cloud datasets. However, severe performance degradation in the past trained classes, i.e., catastrophic forgetting, still remains a critical issue for real-world deployment when the number of classes is unknown or may vary. Moreover, existing 3D class-incremental detection methods are developed for the single-domain scenario, which fail when encountering domain shift caused by different datasets, varying environments, etc. In this paper, we identify the unexplored yet valuable scenario, i.e., class-incremental learning under domain shift, and propose a novel 3D domain adaptive class-incremental object detection framework, DA-CIL, in which we design a novel dual-domain copy-paste augmentation method to construct multiple augmented domains for diversifying training distributions, thereby facilitating gradual domain adaptation. Then, multi-level consistency is explored to facilitate dual-teacher knowledge distillation from different domains for domain adaptive class-incremental learning. Extensive experiments on various datasets demonstrate the effectiveness of the proposed method over baselines in the domain adaptive class-incremental learning scenario.
翻译:在3D对象探测方面,随着大规模云层数据集的出现,深层学习取得了显著的成功。然而,过去受过训练的班级的性能严重退化,即灾难性的遗忘,在班级数目不详或可能不同的情况下,对于实际部署来说仍然是一个关键问题。此外,为单域情景开发了现有的3D类增量检测方法,在遇到不同数据集、不同环境等造成的域变换时未能成功。在本文件中,我们确定了尚未探索但有价值的情景,即域变换中的类增量学习,并提出了一个新的3D类适应性级增量物体探测框架DA-CIL,我们在这个框架中设计了一个新的双向复制增强方法,以构建多个扩大域,使培训分布多样化,从而便利逐步进行域变换。然后,探索了多层次一致性,以便利从不同领域提取双重教师知识,用于域适应性类增量学习。对各种数据集进行了广泛的实验,展示了拟议方法在域适应级情景基线上的效力。