This paper presents a novel speech phase prediction model which predicts wrapped phase spectra directly from amplitude spectra by neural networks. The proposed model is a cascade of a residual convolutional network and a parallel estimation architecture. The parallel estimation architecture is composed of two parallel linear convolutional layers and a phase calculation formula, imitating the process of calculating the phase spectra from the real and imaginary parts of complex spectra and strictly restricting the predicted phase values to the principal value interval. To avoid the error expansion issue caused by phase wrapping, we design anti-wrapping training losses defined between the predicted wrapped phase spectra and natural ones by activating the instantaneous phase error, group delay error and instantaneous angular frequency error using an anti-wrapping function. Experimental results show that our proposed neural speech phase prediction model outperforms the iterative Griffin-Lim algorithm and other neural network-based method, in terms of both reconstructed speech quality and generation speed.


翻译:本文介绍了一个新的语音阶段预测模型,该模型直接从神经网络的振幅光谱中预测包裹的相光谱。 拟议的模型是一个残余的卷变网络和平行估算结构的级联。 平行估算结构由两个平行的线性卷变层和一个阶段计算公式组成, 仿照从复杂光谱真实和想象部分计算相光谱的过程, 并严格将预测的相光值限制在主要值间隔。 为了避免由阶段包装引起的错误扩展问题, 我们设计了反包装培训损失, 由预测的包裹相光谱与自然相光谱界定, 其方法是用反包装功能激活瞬时相错误、 群延错误和瞬时角频率错误。 实验结果显示,我们拟议的神经语音阶段预测模型在重建语音质量和生成速度两方面都超越了迭接的Grif- Lim算法和其他以神经网络为基础的方法。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员