We are studying the problem of estimating density in a wide range of metric spaces, including the Euclidean space, the sphere, the ball, and various Riemannian manifolds. Our framework involves a metric space with a doubling measure and a self-adjoint operator, whose heat kernel exhibits Gaussian behaviour. We begin by reviewing the construction of kernel density estimators and the related background information. As a novel result, we present a pointwise kernel density estimation for probability density functions that belong to general H\"{o}lder spaces. The study is accompanied by an application in Seismology. Precisely, we analyze a globally-indexed dataset of earthquake occurrence and compare the out-of-sample performance of several approximated kernel density estimators indexed on the sphere.
翻译:我们研究了在广泛的度量空间,包括欧几里得空间,球,球体和各种黎曼流形中估算密度的问题。我们的框架涉及具有倍增衡量和自共轭算子的度量空间,其热核呈高斯行为。我们首先回顾核密度估计的构造和相关背景信息。作为新的结果,我们提出了一种针对属于一般H\"{o}lder空间的概率密度函数的点态核密度估计。该研究伴随着地震学中的应用。精确地说,我们分析了一组全球指数的地震发生数据集,并比较了球面索引上几个近似的核密度估计器的样本外性能。