Integrated Computational Materials Engineering (ICME) models have been a crucial building block for modern materials development, relieving heavy reliance on experiments and significantly accelerating the materials design process. However, ICME models are also computationally expensive, particularly with respect to time integration for dynamics, which hinders the ability to study statistical ensembles and thermodynamic properties of large systems for long time scales. To alleviate the computational bottleneck, we propose to model the evolution of statistical microstructure descriptors as a continuous-time stochastic process using a non-linear Langevin equation, where the probability density function (PDF) of the statistical microstructure descriptors, which are also the quantities of interests (QoIs), are modeled by the Fokker-Planck equation. We discuss how to calibrate the drift and diffusion terms of the Fokker-Planck equation from the theoretical and computational perspectives. The calibrated Fokker-Planck equation can be used as a stochastic reduced-order model (ROM) to simulate the microstructure evolution of statistical microstructure descriptors PDF. Considering statistical microstructure descriptors in the microstructure evolution as QoIs, we demonstrate our proposed methodology in three integrated computational materials engineering (ICME) models: kinetic Monte Carlo, phase field, and molecular dynamics simulations.
翻译:综合综合计算材料工程(ICME)模型是现代材料开发、减轻大量依赖实验和大大加快材料设计过程的重要基石,但是,ICME模型在计算上也是昂贵的,特别是在动态的时间整合方面,这妨碍了长期研究大型系统统计集合和热动力特性的能力。为了减轻计算瓶颈,我们提议用非线性朗埃文方程式模拟统计微结构描述器的演变,作为一个连续时间的随机分析过程,其中统计微观结构描述器的概率密度功能(PDF)也是利益(QoIs)的数量,由Fokker-Planck方程式模拟。我们讨论如何从理论和计算角度来校准Fokker-Planck方程式的漂移和扩散术语。校准的Fokker-Planck方程式可用作一种随机性减序模型(ROM),用以模拟统计微观系统描述器的微结构变化,其中也包括利益(QIs)量量的模型。我们将统计微观结构结构的模型作为实地的模型,将Meximal ASimal imal destractal imationsturing imations