项目名称: 对称密码中的非线性函数设计与分析
项目编号: No.61202463
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 计算机科学学科
项目作者: 王启春
作者单位: 湖南科技学院
项目金额: 24万元
中文摘要: 非线性函数在对称密码中起着至关重要的作用。由于快速代数攻击、非线性等价攻击和高阶代数攻击等新兴攻击方法的引入,目前已没有一类非线性函数能被证明具有所有必要的密码性质,设计安全的布尔函数和向量值函数是亟待解决的重要课题。本课题将在原有工作基础上,把利用本原多项式构造布尔函数的方法进行推广,设计几类布尔函数具有所有必要的密码性质:平衡、高的代数次数、高的非线性度、高的代数免疫、高的快速代数免疫且所有与其非线性等价的布尔函数亦具有好的密码性质。我们还将深入研究利用扩域构造向量值函数的方法,构造几类具有好的密码性质的向量值函数:置换、低的差分均匀度、高的非线性度、高的代数次数以及好的抵制代数攻击的能力,我们会对这些非线性函数进行详细分析,特别研究其抵制高阶代数攻击的能力。本课题的完成,将构造出具有所有必要性质的布尔函数和向量值函数,从而可以用来设计安全的序列密码和分组密码。
中文关键词: 序列密码;分组密码;布尔函数;向量布尔函数;非线性度
英文摘要: Nonlinear functions play a central role in symmetric cryptosystems. Because of the introduction of some new attacks, such as fast algebraic attacks, attacks on the nonlinear equivalence class and higher order algebraic attacks, there are no nonlinear functions satisfying all the cryptographic criteria. It is urgent to design secure Boolean functions and vectorial Boolean functions. Based on our previous work, we will generalize the method of constructing Boolean functions using primitive polynomials, and design some infinite classes of Boolean functions with all desired features: balancedness, high algebraic degree, high nonlinearity, high algebraic immunity, high fast algebraic immunity and all Boolean functions nonlinear equivalent to them also have good cryptographic properties. We will investigate further the construction of vectorial Boolean functions using extension fields, and construct some infinite classes of vectorial Boolean functions with good cryptographic properties: permutation, low differential uniformity, high nonlinearity, high algebraic degree and good behavior against algebraic attacks. We will analyze these functions in detail, and particularly, investigate their ability to resist higher order algebraic attacks. Moreover, we will establish a complete theory of higher order algebraic attacks,
英文关键词: stream cipher;block cipher;Boolean function;vectorial Boolean function;nonlinearity