We study an implicit finite-volume scheme for non-linear, non-local aggregation-diffusion equations which exhibit a gradient-flow structure, recently introduced by Bailo, Carrillo, and Hu (2020). Crucially, this scheme keeps the dissipation property of an associated fully discrete energy, and does so unconditionally with respect to the time step. Our main contribution in this work is to show the convergence of the method under suitable assumptions on the diffusion functions and potentials involved.
翻译:我们研究的是非线性、非本地集成扩散方程式的隐含有限量计划,该计划最近由拜洛、卡里略和胡(2020年)推出,呈现了梯度流结构。 关键的是,该计划保持了相关完全离散能源的耗损特性,并在时间步骤方面无条件地这样做。 我们在这项工作中的主要贡献是显示方法在适当假设所涉扩散功能和潜力的情况下的趋同。