We study the robust matrix completion problem for the low-rank Hankel matrix, which detects the sparse corruptions caused by extreme outliers while we try to recover the original Hankel matrix from the partial observation. In this paper, we explore the convenient Hankel structure and propose a novel non-convex algorithm, coined Hankel Structured Gradient Descent (HSGD), for large-scale robust Hankel matrix completion problems. HSGD is highly computing- and sample-efficient compared to the state-of-the-arts. The recovery guarantee with a linear convergence rate has been established for HSGD under some mild assumptions. The empirical advantages of HSGD are verified on both synthetic datasets and real-world nuclear magnetic resonance signals.
翻译:我们研究低级汉克尔矩阵的稳健矩阵完成问题,该矩阵检测出极端离子造成的零散腐败,同时试图从部分观察中恢复原汉克尔矩阵。我们在本文件中探索了方便的汉克尔结构,并提出了新的非阴道算法,即创制的汉克尔结构梯子(HSGD ), 以解决大规模稳健的汉克尔矩阵完成问题。 与最新技术相比,HSGD具有很高的计算和抽样效率。 以线性趋同率为HSGD的回收保证已经根据一些温和的假设为HSGD确立了线性趋同率。 HSGD的经验优势在合成数据集和实际世界核磁共振信号上都得到了验证。