This work proposes a new framework of model reduction for parametric complex systems. The framework employs a popular model reduction technique dynamic mode decomposition (DMD), which is capable of combining data-driven learning and physics ingredients based on the Koopman operator theory. In the offline step of the proposed framework, DMD constructs a low-rank linear surrogate model for the high dimensional quantities of interest (QoIs) derived from the (nonlinear) complex high fidelity models (HFMs) of unknown forms. Then in the online step, the resulting local reduced order bases (ROBs) and parametric reduced order models (PROMs) at the training parameter sample points are interpolated to construct a new PROM with the corresponding ROB for a new set of target/test parameter values. The interpolations need to be done on the appropriate manifolds within consistent sets of generalized coordinates. The proposed framework is illustrated by numerical examples for both linear and nonlinear problems. In particular, its advantages in computational costs and accuracy are demonstrated by the comparisons with projection-based proper orthogonal decomposition (POD)-PROM and Kriging.
翻译:这项工作提出了一个新的参数复杂系统模型减少框架。框架采用流行的模型减少技术动态模式分解(DMD),它能够根据Koopman操作员理论,将数据驱动的学习和物理成分结合起来。在拟议框架的离线步骤中,DMD为来自(非线性)复杂高度忠诚模式的未知形式的高维利益量(QoIs)构建了一个低端线性代谢模型。随后在在线步骤中,在培训参数抽样点产生的本地降级标定基(ROBs)和参数减序模型(PROMs)被相互推介,以建立一个与新的指标/测试参数值对应的ROB相配的新的PROM(ROM),在统一坐标范围内需要对适当的多维参数进行相互调。拟议框架用线性和非线性问题的数字示例加以说明。特别是,其计算成本和准确性的优势通过与基于预测的正值或直线性脱形(POD-PROM-PROM)和克里格的比较得到证明。