We propose a novel concise function representation for graphical models, a central theoretical framework that provides the basis for many reasoning tasks. We then show how we exploit our concise representation based on deterministic finite state automata within Bucket Elimination (BE), a general approach based on the concept of variable elimination that can be used to solve many inference and optimisation tasks, such as most probable explanation and constrained optimisation. We denote our version of BE as FABE. By using our concise representation within FABE, we dramatically improve the performance of BE in terms of runtime and memory requirements. Results achieved by comparing FABE with state of the art approaches for most probable explanation (i.e., recursive best-first and structured message passing) and constrained optimisation (i.e., CPLEX, GUROBI, and toulbar2) following an established methodology confirm the efficacy of our concise function representation, showing runtime improvements of up to 5 orders of magnitude in our tests.
翻译:我们为图形模型提出了一个新颖的简明功能代表,这是一个核心理论框架,为许多推理任务提供了依据。然后,我们展示了如何利用我们基于巴克特消除(Bucket Ereach)内部的确定性有限国家自动数据(BE)的简明代表,这是一种基于可变消除概念的一般方法,可用于解决许多推论和优化任务,例如最有可能的解释和限制优化。我们表示我们的FABE版本是FABE。我们利用我们在FABE内部的简明代表,极大地改进了BE在运行时间和记忆要求方面的绩效。通过将FABE与最可能的解释(即循环最佳第一和结构化信息传递)的先进方法进行比较,以及按照既定方法限制优化(即CPLEX、GROBI和Toulbar2)的结果,证明了我们简明功能代表的效率,显示了我们测试中高达5级的运行时间改进。