项目名称: 概率和平均框架下一系列Sobolev空间中的函数逼近与恢复
项目编号: No.11501456
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 黄泽霞
作者单位: 西华大学
项目金额: 18万元
中文摘要: 本项目在平均框架和概率框架下研究一系列Sobolev空间中的函数逼近和恢复问题. 主要包括以下几个部分。.第一个部分主要为宽度问题:(1)研究具有共同混合光滑性的Sobolev空间在$L_q(1
中文关键词: 概率和平均框架;最优渐近阶;宽度;采样数;Sobolev空间
英文摘要: This project devote to studying the problem of approximation and recovery of functions on a series of Sobolev space in the probabilistic and average case setting. It mainly includes the following several parts. .The first one is width problem: (1)We study asymptotic orders of the probabilistic and average Kolmogorov and linear width on the Sobolev space with common mixed smoothness in the L_q-metric for $1<q<\infty$. Moreover, we want to find the asymptotically optimal subspace of this Sobolev space.(2) we study asymptotic orders of the probabilistic Kolmogorov and linear width on the anisotropic multivariate periodic Sobolev space in the L_q-metric for $1\leq q\leq \infty$. .The second one is the optimal recovery: (1) we devote to studying average sampling numbers of Sobolev space on the sphere in the $L_q$ metric for$ 1\leq q \leq \infty$, and obtain the asymptotical orders. (2) we devote to studying average sampling numbers of anisotropic multivariate periodic Sobolev space in the $L_q$ metric for$ 1\leq q \leq \infty$, and obtain the asymptotical orders.
英文关键词: the probabilistic and average case setting;the optimal asymptotic order;width;sampling numbers;Sobolev space