Meta-learning has received a tremendous recent attention as a possible approach for mimicking human intelligence, i.e., acquiring new knowledge and skills with little or even no demonstration. Most of the existing meta-learning methods are proposed to tackle few-shot learning problems such as image and text, in rather Euclidean domain. However, there are very few works applying meta-learning to non-Euclidean domains, and the recently proposed graph neural networks (GNNs) models do not perform effectively on graph few-shot learning problems. Towards this, we propose a novel graph meta-learning framework -- Meta-GNN -- to tackle the few-shot node classification problem in graph meta-learning settings. It obtains the prior knowledge of classifiers by training on many similar few-shot learning tasks and then classifies the nodes from new classes with only few labeled samples. Additionally, Meta-GNN is a general model that can be straightforwardly incorporated into any existing state-of-the-art GNN. Our experiments conducted on three benchmark datasets demonstrate that our proposed approach not only improves the node classification performance by a large margin on few-shot learning problems in meta-learning paradigm, but also learns a more general and flexible model for task adaption.


翻译:作为模拟人类智能的一种可能办法,元学习最近受到极大的关注,作为模拟人类智能的一种可能办法,即获得新的知识和技能,很少甚至没有示范,大多数现有的元学习方法都建议解决微小的学习问题,例如图象和文字,而不是欧几里德域;然而,将元学习应用于非欧几里德域的工作很少,最近提议的图形神经网络模型在图示少见的学习问题上不能有效发挥作用。为此,我们提出了一个新的图表元学习框架 -- -- Meta-GNN -- -- 以解决图表元学习环境中的微小节点分类问题。它通过培训许多类似的微小学习任务,获得分类人员先前的知识,然后将新班的节点分类,只有很少贴标签的样本。此外,Meta-GNNN是一个一般模型,可以直接纳入任何现有的最新工艺的GNNN。我们在三个基准数据集上进行的实验表明,我们拟议的方法不仅改进了节点分类的成绩,而且还通过大幅度的模型学习,在微小的学习中,通过一个大差的模型学习问题来改进。

5
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
56+阅读 · 2020年1月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Top
微信扫码咨询专知VIP会员