主题: A New Meta-Baseline for Few-Shot Learning

摘要: 近年来,元学习已经成为小样本学习的流行框架,其目标是从少拍分类任务的集合中学习模型。虽然提出了越来越多的新颖元学习模型,但我们的研究发现了被忽视的简单基准。我们通过在所有基类上预先训练分类器,并在基于最近质心的少数镜头分类算法上进行元学习,提出了一种Meta-Baseline方法,该方法以较大的优势胜过了最新的方法。为什么这个简单的方法这么好?在元学习阶段,我们观察到在基础类的未见任务上更好地推广的模型在新型类任务上的性能可能会下降,这表明存在潜在的客观差异。我们发现预训练和从预训练的分类器继承良好的几次快照分类法对于元基线都很重要,这可能有助于模型更好地利用具有更强可传递性的预训练表示。此外,我们研究了何时需要在此元基线中进行元学习。我们的工作为该领域建立了一个新的基准,并为进一步了解元学习框架中的几次学习现象提供了启示。

成为VIP会员查看完整内容
66

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
84+阅读 · 2020年6月9日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
专知会员服务
87+阅读 · 2020年1月20日
OpenAI科学家一文详解自监督学习
新智元
18+阅读 · 2019年11月20日
元学习—Meta Learning的兴起
专知
44+阅读 · 2019年10月19日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
小样本学习(Few-shot Learning)综述
云栖社区
22+阅读 · 2019年4月6日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关论文
Arxiv
7+阅读 · 2020年3月1日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
11+阅读 · 2018年7月8日
微信扫码咨询专知VIP会员