元学习已被提出作为一个框架来解决具有挑战性的小样本学习设置。关键的思想是利用大量相似的小样本任务,以学习如何使基学习者适应只有少数标记的样本可用的新任务。由于深度神经网络(DNNs)倾向于只使用少数样本进行过度拟合,元学习通常使用浅层神经网络(SNNs),因此限制了其有效性。本文提出了一种新的学习方法——元转移学习(MTL)。具体来说,“meta”是指训练多个任务,“transfer”是通过学习每个任务的DNN权值的缩放和变换函数来实现的。此外,我们还介绍了作为一种有效的MTL学习课程的困难任务元批处理方案。我们使用(5类,1次)和(5类,5次)识别任务,在两个具有挑战性的小样本学习基准上进行实验:miniImageNet和Fewshot-CIFAR100。通过与相关文献的大量比较,验证了本文提出的HT元批处理方案训练的元转移学习方法具有良好的学习效果。消融研究还表明,这两种成分有助于快速收敛和高精度。
地址:
https://arxiv.org/abs/1812.02391
代码: