Users interact with text, image, code, or other editors on a daily basis. However, machine learning models are rarely trained in the settings that reflect the interactivity between users and their editor. This is understandable as training AI models with real users is not only slow and costly, but what these models learn may be specific to user interface design choices. Unfortunately, this means most of the research on text, code, and image generation has focused on non-interactive settings, whereby the model is expected to get everything right without accounting for any input from a user who may be willing to help. We introduce a new Interactive Text Generation task that allows training generation models interactively without the costs of involving real users, by using user simulators that provide edits that guide the model towards a given target text. We train our interactive models using Imitation Learning, and our experiments against competitive non-interactive generation models show that models trained interactively are superior to their non-interactive counterparts, even when all models are given the same budget of user inputs or edits.
翻译:用户每天与文本、 图像、 代码或其他编辑进行互动。 但是, 机器学习模式很少在反映用户与其编辑之间互动的环境下得到培训。 这可以理解, 因为与实际用户一起培训AI模式不仅缓慢且昂贵, 而且这些模式所学到的东西对于用户界面设计选择来说可能是特有的。 不幸的是, 这意味着关于文本、 代码和图像生成的大部分研究都集中在非互动环境上, 因此模型有望在不计及任何用户可能愿意帮助的输入的情况下获得所有正确的信息。 我们引入了一个新的交互式文本生成任务, 通过使用用户模拟器来提供互动的生成模型, 而不涉及实际用户的成本, 我们使用用户模拟器来提供用于指导模型走向特定目标文本的编辑。 我们使用模拟学习软件来培训我们的交互式模型, 并且我们针对竞争性的非互动生成模型的实验显示,经过互动培训的模型比非互动的模型的同行要优越, 即使所有模型都具有同样的用户投入或编辑预算。</s>