【推荐】图像分类必读开创性论文汇总

2017 年 8 月 15 日 机器学习研究会


点击上方 “机器学习研究会”可以订阅
摘要
 

转自:爱可可-爱生活

Deep Learning models for Image Classification have achieved an exponential decline in error rate through last few years. Since then, Deep Learning has become prime focus area for AI research. However, Deep Learning has been around for a few decades now. Yann Lecun, presented a paper pioneering the Convolutional Neural Networks (CNN) in 1998. But it wasn’t until the start of the current decade that Deep Learning really took off. The recent disruption can be attributed to increased processing power (aka GPUs), the availability of abundant data (aka Imagenet dataset) and new algorithms and techniques. It all started in 2012 with the AlexNet, a large, deep Convolutional Neural Network which won the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC). ILSVRC is a competition where research teams evaluate their algorithms on the given data set and compete to achieve higher accuracy on several visual recognition tasks.
Since then, variants of CNNs have dominated the ILSVRC and have surpassed the level of human accuracy, which is considered to lie in the 5-10% error range.

For us as humans, it very easy to understand contents of an image. For example, while watching a movie (like Lord of The Rings) I just need to see one example of a Dwarf and that allows me to identify other dwarves without any effort. However, for a machine, the task is extremely challenging because all it can see in an image is an array of numbers. If the task is to identify a cat in an image, you can appreciate the difficulty in finding a cat from this vast array of numbers. Also, cats come in all shapes, sizes, colors and poses, making the task even more challenging.

How we see objects vs how a machine sees them

Based on our experience with Deep Learning for more than four years now, we are listing down some path breaking research papers that are a must-read for anyone associated with computer vision. In this blog-post we focus specifically on image classification and following posts will cover other areas such as object detection and localization.
Also, we have added our two cents about some upcoming algorithms which have the potential to shape the future of computer vision research.


链接:

http://blog.paralleldots.com/technology/deep-learning/must-read-path-breaking-papers-about-image-classification/


原文链接:

https://m.weibo.cn/1402400261/4140930397690270

“完整内容”请点击【阅读原文】
↓↓↓


登录查看更多
14

相关内容

图像分类是指给定一组各自被标记为单一类别的图像,然后对一组新的测试图像的类别进行预测,并测量预测的准确性结果。
专知会员服务
61+阅读 · 2020年3月19日
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
77+阅读 · 2020年1月15日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
19+阅读 · 2019年4月5日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Arxiv
5+阅读 · 2018年10月11日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
77+阅读 · 2020年1月15日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
相关资讯
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员