In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels. To determine appropriate thresholds with only a few examples, we first learn universal thresholding experience on data-rich domains, and then adapt the thresholds to certain few-shot domains with a calibration based on nonparametric learning. For better calculation of label-instance relevance score, we introduce label name embedding as anchor points in representation space, which refines representations of different classes to be well-separated from each other. Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
翻译:在本文中,我们研究了用于检测用户意图的微小多标签分类。 对于多标签意图检测, 最先进的工作估计标签- Instance 关联性评分, 并使用一个阈值来选择多个相关意图标签。 为了只用几个例子来确定适当的阈值, 我们首先学习了数据丰富领域的通用阈值经验, 然后将阈值调整到基于非参数学识的校准的某些微小域。 为了更好地计算标签- Instance 关联性评分, 我们引入了标签名称嵌入作为代表空间的锚点, 从而改进不同类别的表示方式, 以便相互分离 。 对两个数据集的实验显示, 拟议的模型大大优于一分和五分环境的强基线 。