Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on answering questions that have rare answers. In addition, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, which achieves similar performance to separately optimized single-task models. Our code will be publicly available at: https://github.com/j-min/VL-T5


翻译:视觉和语言学习的现有方法通常要求为每项任务设计特定任务的结构和目标。 例如,一个用于视觉问答的多标签回答分类器,一个用于查找表达理解的区域评分器,以及一个用于图像字幕的语言解码器等。 为了缓解这些麻烦,我们在这项工作中提议了一个统一框架,在单一结构中学习不同任务,具有相同的语言建模目标,即多式有条件文本生成,我们的模型学习根据视觉和文字投入在文本文本中生成标签。在7个流行的视觉和语言基准上,包括视觉回答、引用表达理解、视觉常识推理,其中多数以前是作为歧视任务建模的。为了减轻这些麻烦,我们建议了一个统一的框架,在单一结构中学习不同的任务,即同一语言建模目标,即多式有条件的文本生成。此外,我们的系统框架允许在一个单一结构中进行多任务化学习,包括视觉回答、参考表达理解、视觉常识解理推理,其中多数以前是作为歧视性任务的模型,我们的基因化方法(有一个单一统一的架构)可以与最近的特定任务状态相比。 此外,我们的基因缩缩写方法显示回答问题难解答问题的能力。 此外,我们的框架允许在一个单一的代码模型将实现相似的简单化的单一模型。

10
下载
关闭预览

相关内容

抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文纵览 Vision-and-Language 领域最新研究与进展
AI科技评论
7+阅读 · 2019年5月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
计算机视觉领域顶会CVPR 2018 接受论文列表
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文纵览 Vision-and-Language 领域最新研究与进展
AI科技评论
7+阅读 · 2019年5月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
计算机视觉领域顶会CVPR 2018 接受论文列表
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员