项目名称: 变指数非线性分析中的若干问题
项目编号: No.11301181
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 姬超
作者单位: 华东理工大学
项目金额: 23万元
中文摘要: 变指数非线性问题,特别是具非标准增长条件的微分方程和变指数函数空间理论近年来成为研究的热点,它们主要应用于电流变流体模型,热流变流体模型和图像处理模型等领域。本项目立足于变指数非线性分析的前沿, 结合泛函分析,实分析,拓扑学,群论,偏微分方程的内容,拟通过新的思想和方法考虑p(x)-Laplacian椭圆方程的变号解,带有临界Sobolev指数的p(x)-Laplacian椭圆方程以及具非标准增长条件抛物方程解的存在性,唯一性和正则性。
中文关键词: p(x)-Laplacian 方程;非线性分析;抛物方程;Schrodinger方程;Kirchhoff方程
英文摘要: Nonlinear problems of variable exponents,especially differential equations with nonstandard growth conditions and the theory of the function spaces with variable exponents, have been studied extensively in recent years. These problems are used in the modeling of electrorheological fluids, thermorheological fluids and image processing,etc.In this project, we will investigate the sign-changing solutions of the p(x)-Laplacian elliptic equations, the p(x)-Laplacian elliptic equations with critical Sobolev exponent and existence, uniqueness and regularity of solutions of the parabolic equations with nonstandard growth conditions by new ideas and methods. It is based on the frontier of nonlinear analysis of variable exponents, and closed related to functional and real analysis, topology, group theory and PDEs.
英文关键词: p(x)-Laplacian equations;Nonlinear analysis;Parabolic equations;Schrodinger equations;Kirchhoff equations