© 作者|王晓磊 机构|中国人民大学高瓴人工智能学院 研究方向 | 对话式信息获取

本文从NeurlPS 2022 的2000多篇接收论文中筛选出了与自然语言处理相关的论文200多篇,并按照研究主题进行分类整理,以供参考。

导读:

NeurIPS 2022 是 CCF A 类会议,人工智能领域方向的顶级国际会议之一。第36届神经信息处理系统会议将于今年 11 月 28 日至 12 月 9 日举行。官方发布的接收论文列表链接如下:https://nips.cc/Conferences/2022/Schedule?type=Poster。

本文从 2000 多篇接收论文中筛选出了与自然语言处理相关的论文 200 多篇,并按照研究主题进行分类整理,以供参考。论文列表也同步更新到 GitHub,欢迎大家关注和Star:github.com/RUCAIBox/Top-conference-paper-list。

目录:

Model 【模型】 * Interpretability, Analysis and Evaluation 【可解释性、分析、评测】 * Robustness and Safety 【鲁棒性与安全】 * knowledge and reasoning 【知识与推理】 * Information Extraction 【信息抽取】 * Information Retrieval 【信息检索】 * Text Classification 【文本分类】 * Text Generation 【文本生成】 * Machine Translation and Multilinguality 【机器翻译与多语言】 * Multimodality 【多模态】 * Special Tasks 【特殊任务】

01 **Model **

【模型】****

1. Model Design 【模型设计】

Recurrent Memory Transformer

Jump Self-attention: Capturing High-order Statistics in Transformers * Block-Recurrent Transformers * Staircase Attention for Recurrent Processing of Sequences * Non-Linguistic Supervision for Contrastive Learning of Sentence Embeddings * Transcormer: Transformer for Sentence Scoring with Sliding Language Modeling * Mixture-of-Experts with Expert Choice Routing * On the Representation Collapse of Sparse Mixture of Experts * Improving Transformer with an Admixture of Attention Heads * Your Transformer May Not be as Powerful as You Expect * Confident Adaptive Language Modeling * Decoupled Context Processing for Context Augmented Language Modeling * Unsupervised Cross-Task Generalization via Retrieval Augmentation * Revisiting Neural Scaling Laws in Language and Vision * Learning to Scaffold: Optimizing Model Explanations for Teaching

2. Model Compression 【模型压缩】

Information-Theoretic Generative Model Compression with Variational Energy-based Model * Towards Efficient Post-training Quantization of Pre-trained Language Models * Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models * Deep Compression of Pre-trained Transformer Models * LiteTransformerSearch: Training-free On-device Search for Efficient Autoregressive Language Models * GPT3.int8(): 8-bit Matrix Multiplication for Transformers at Scale * MorphTE: Injecting Morphology in Tensorized Embeddings * Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models * A Fast Post-Training Pruning Framework for Transformers

  1. Model Training 【模型训练】

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models * Generating Training Data with Language Models: Towards Zero-Shot Language Understanding * A Data-Augmentation Is Worth A Thousand Samples * TokenMixup: Efficient Attention-guided Token-level Data Augmentation for Transformers * The Stability-Efficiency Dilemma: Investigating Sequence Length Warmup for Training GPT Models * Tempo: Accelerating Transformer-Based Model Training through Memory Footprint Reduction * Training and Inference on Any-Order Autoregressive Models the Right Way * Decentralized Training of Foundation Models in Heterogeneous Environment

4. Model Usage 【模型使用】

The Unreliability of Explanations in Few-Shot In-Context Learning * What Can Transformers Learn In-Context? A Case Study of Simple Function Classes * Decoupling Knowledge from Memorization: Retrieval-augmented Prompt Learning * Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning * Training language models to follow instructions with human feedback * LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning * How to talk to your model: Instructions, descriptions, and learning * Data Distributional Properties Drive Emergent In-Context Learning in Transformers * Sparse Structure Search for Parameter-Efficient Tuning * Fine-Tuning Pre-Trained Language Models Effectively by Optimizing Subnetworks Adaptively * Second Thoughts are Best: Learning to Re-Align With Human Values from Text Edits * LIFT: Language-Interfaced FineTuning for Non-language Machine Learning Tasks * Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts

02 **Interpretability, Analysis and Evaluation **

【可解释性、分析、评测】

CEBaB: Estimating the Causal Effects of Real-World Concepts on NLP Model Behavior * Rule-Based but Flexible? Evaluating and Improving Language Models as Accounts of Human Moral Judgment * Understanding the Failure of Batch Normalization for Transformers in NLP * AttCAT: Explaining Transformers via Attentive Class Activation Tokens * An empirical analysis of compute-optimal large language model training * Why GANs are overkill for NLP * Exploring Length Generalization in Large Language Models * Capturing Failures of Large Language Models via Human Cognitive Biases * Pre-Trained Model Reusability Evaluation for Small-Data Transfer Learning * First is Better Than Last for Language Data Influence * What are the best Systems? New Perspectives on NLP Benchmarking * Characteristics of Harmful Text: Towards Rigorous Benchmarking of Language Models * FETA: Towards Specializing Foundational Models for Expert Task Applications * This is the way - lessons learned from designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish * Rethinking Knowledge Graph Evaluation Under the Open-World Assumption * A Multi-Task Benchmark for Korean Legal Language Understanding and Judgement Prediction

03 **Robustness and Safety **

【鲁棒性与安全】

Active Learning Helps Pretrained Models Learn the Intended Task * Improving Certified Robustness via Statistical Learning with Logical Reasoning * Moderate-fitting as a Natural Backdoor Defender for Pre-trained Language Models * BadPrompt: Backdoor Attacks on Continuous Prompts * A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models * Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models * AD-DROP: Attribution Driven Dropout for Robust Language Model Finetuning * Large (robust) models from computational constraints * Multitasking Models are Robust to Structural Failure: A Neural Model for Bilingual Cognitive Reserve * A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks * Recovering Private Text in Federated Learning of Language Models * LAMP: Extracting Text from Gradients with Language Model Priors * SeqPATE: Differentially Private Text Generation via Knowledge Distillation * Differentially Private Model Compression * Federated Learning from Pre-Trained Models: A Contrastive Learning Approach

04 Knowledge and Reasoning 【知识与推理】

Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graph * Retaining Knowledge for Learning with Dynamic Definition * Shadow Knowledge Distillation: Bridging Offline and Online Knowledge Transfer * What Makes a "Good" Data Augmentation in Knowledge Distillation - A Statistical Perspective * Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures * Roadblocks for Temporarily Disabling Shortcuts and Learning New Knowledge * PALBERT: Teaching ALBERT to Ponder * Locating and Editing Factual Associations in GPT * OTKGE: Multi-modal Knowledge Graph Embeddings via Optimal Transport * Large Language Models are Zero-Shot Reasoners * STaR: Bootstrapping Reasoning With Reasoning * Chain of Thought Prompting Elicits Reasoning in Large Language Models * ELASTIC: Numerical Reasoning with Adaptive Symbolic Compiler * Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering * Inductive Logical Query Answering in Knowledge Graphs * Formalizing Coherence and Consistency Applied to Transfer Learning in Neuro-Symbolic Autoencoders * CoNSoLe: Convex Neural Symbolic Learning * Deep Bidirectional Language-Knowledge Pretraining * Neurosymbolic Deep Generative Models for Sequence Data with Relational Constraints * Instance-based Learning for Knowledge Base Completion * LogiGAN: Learning Logical Reasoning via Adversarial Pre-training * Learning robust rule representations for abstract reasoning via internal inferences * Solving Quantitative Reasoning Problems with Language Models * Towards Better Evaluation for Dynamic Link Prediction * Predictive Querying for Autoregressive Neural Sequence Models * Semantic Probabilistic Layers for Neuro-Symbolic Learning * End-to-end Symbolic Regression with Transformers * A Unified Framework for Deep Symbolic Regression * ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time

05 **Information Extraction **

【信息抽取】

Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model * TweetNERD - End to End Entity Linking Benchmark for Tweets * METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets

06 Information Retrieval

【信息检索】

Transformer Memory as a Differentiable Search Index * Autoregressive Search Engines: Generating Substrings as Document Identifiers * A Neural Corpus Indexer for Document Retrieval

07 **Text Classification **

【文本分类】

CascadeXML: End-to-end Multi-Resolution Learning for Extreme Multi-Label Text Classification * Text Classification with Born's Rule * Public Wisdom Matters! Discourse-Aware Hyperbolic Fourier Co-Attention for Social Text Classification

08 **Text Generation **

【文本生成】

CoNT: Contrastive Neural Text Generation

A Character-Level Length Control Algorithm for Non-Autoregressive Sentence Summarization * Towards Improving Faithfulness in Abstractive Summarization * QUARK: Controllable Text Generation with Reinforced Unlearning * Teacher Forcing Recovers Reward Functions for Text Generation * Retrieve, Reason, and Refine: Generating Accurate and Faithful Patient Instructions * A Contrastive Framework for Neural Text Generation * Learning to Break the Loop: Analyzing and Mitigating Repetitions for Neural Text Generation * COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics * Diffusion-LM Improves Controllable Text Generation * Factuality Enhanced Language Models for Open-Ended Text Generation * Controllable Text Generation with Neurally-Decomposed Oracle * InsNet: An Efficient, Flexible, and Performant Insertion-based Text Generation Model * Relation-Constrained Decoding for Text Generation * EHRSQL: A Practical Text-to-SQL Benchmark for Electronic Health Records * TGEA 2.0: A Large-Scale Diagnostically Annotated Dataset with Benchmark Tasks for Text Generation of Pretrained Language Models

09 **Machine Translation and Multilinguality **

【机器翻译与多语言】

Exploring Non-Monotonic Latent Alignments for Non-Autoregressive Machine Translation * A new dataset for multilingual keyphrase generation * Less-forgetting Multi-lingual Fine-tuning * Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech Processing * Refining Low-Resource Unsupervised Translation by Language Disentanglement of Multilingual Translation Model * OccGen: Selection of Real-world Multilingual Parallel Data Balanced in Gender within Occupations * Multilingual Abusive Comment Detection at Scale for Indic Languages * The BigScience Corpus A 1.6TB Composite Multilingual Dataset * Addressing Resource Scarcity across Sign Languages with Multilingual Pretraining and Unified-Vocabulary Datasets

10 **Multimodality **

【多模态】

REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual Question Answering * Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning * GLIPv2: Unifying Localization and Vision-Language Understanding * VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts * A Differentiable Semantic Metric Approximation in Probabilistic Embedding for Cross-Modal Retrieval * Egocentric Video-Language Pretraining * Flamingo: a Visual Language Model for Few-Shot Learning * Language Conditioned Spatial Relation Reasoning for 3D Object Grounding * Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning * Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies * OmniVL: One Foundation Model for Image-Language and Video-Language Tasks * Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models * Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning * TVLT: Textless Vision-Language Transformer * Divert More Attention to Vision-Language Tracking * CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers * Text-Adaptive Multiple Visual Prototype Matching for Video-Text Retrieval * BMU-MoCo: Bidirectional Momentum Update For Continual Video-Language Modeling * Expectation-Maximization Contrastive Learning for Compact Video-and-Language Representations * What is Where by Looking: Weakly-Supervised Open-World Phrase-Grounding without Text Inputs * Flamingo: a Visual Language Model for Few-Shot Learning * Self-Supervised Multi-Granularity Map Learning for Vision-and-Language Navigation * UniCLIP: Unified Framework for Contrastive Language-Image Pre-training * Contrastive Language-Image Pre-Training with Knowledge Graphs * PyramidCLIP: Hierarchical Feature Alignment for Vision-language Model Pretraining * Enhancing and Scaling Cross-Modality Alignment for Contrastive Multimodal Pre-Training via Gradient Harmonization * Mutual Information Divergence: A Unified Metric for Multimodal Generative Models * Transferring Pre-trained Multimodal Representations with Cross-modal Similarity Matching * MACK: Multimodal Aligned Conceptual Knowledge for Unpaired Image-text Matching * HUMANISE: Language-conditioned Human Motion Generation in 3D Scenes * CyCLIP: Cyclic Contrastive Language-Image Pretraining * S-Prompts Learning with Pre-trained Transformers: An Occam’s Razor for Domain Incremental Learning * Delving into OOD Detection with Vision-Language Representations * Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding * Language Models with Image Descriptors are Strong Few-Shot Video-Language Learners * DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection * Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts * Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone * CoupAlign: Coupling Word-Pixel with Sentence-Mask Alignments for Referring Image Segmentation * Relational Language-Image Pre-training for Human-Object Interaction Detection * Fine-Grained Semantically Aligned Vision-Language Pre-Training * Cross-Linked Unified Embedding for cross-modality representation learning * Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP * Kernel Multimodal Continuous Attention * Paraphrasing Is All You Need for Novel Object Captioning * Long-Form Video-Language Pre-Training with Multimodal Temporal Contrastive Learning * CLIPDraw: Exploring Text-to-Drawing Synthesis through Language-Image Encoders * One Model to Edit Them All: Free-Form Text-Driven Image Manipulation with Semantic Modulations * LGDN: Language-Guided Denoising Network for Video-Language Modeling * Zero-Shot Video Question Answering via Frozen Bidirectional Language Models * WinoGAViL: Gamified Association Benchmark to Challenge Vision-and-Language Models * VLMbench: A Compositional Benchmark for Vision-and-Language Manipulation * ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models * LAION-5B: An open large-scale dataset for training next generation image-text models * Towards Video Text Visual Question Answering: Benchmark and Baseline * TaiSu: A 166M Large-scale High-Quality Dataset for Chinese Vision-Language Pre-training * Wukong: A 100 Million Large-scale Chinese Cross-modal Pre-training Benchmark * Understanding Aesthetics with Language: A Photo Critique Dataset for Aesthetic Assessment * Multi-modal Robustness Analysis Against Language and Visual Perturbations * CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks * OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression

11

Special Tasks** **

【特殊任务】

1. Code 【代码】

CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning * Fault-Aware Neural Code Rankers * NS3: Neuro-symbolic Semantic Code Search * Pyramid Attention For Source Code Summarization

2. Mathematics 【数学】

HyperTree Proof Search for Neural Theorem Proving * NaturalProver: Grounded Mathematical Proof Generation with Language Models * Autoformalization with Large Language Models * Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers

3. Others 【其他】

Measuring and Reducing Model Update Regression in Structured Prediction for NLP * Learning to Follow Instructions in Text-Based Games * WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents * LISA: Learning Interpretable Skill Abstractions from Language * Inherently Explainable Reinforcement Learning in Natural Language * Using natural language and program abstractions to instill human inductive biases in machines * Semantic Exploration from Language Abstractions and Pretrained Representations * Pre-Trained Language Models for Interactive Decision-Making * Knowledge-Aware Bayesian Deep Topic Model * Improving Intrinsic Exploration with Language Abstractions * Improving Policy Learning via Language Dynamics Distillation * Meta-Complementing the Semantics of Short Texts in Neural Topic Models * Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset * BigBio: A Framework for Data-Centric Biomedical Natural Language Processing

成为VIP会员查看完整内容
50

相关内容

NeurIPS 2022接收论文列表发布,2600多篇论文都在这了!
专知会员服务
87+阅读 · 2022年9月17日
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
54+阅读 · 2020年11月3日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
72+阅读 · 2019年11月3日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
ACL 2022 主会长文论文分类整理
RUC AI Box
4+阅读 · 2022年4月20日
SIGIR 2022 | 推荐系统相关论文分类整理
RUC AI Box
6+阅读 · 2022年4月18日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
28+阅读 · 2021年5月17日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
21+阅读 · 2019年8月21日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关VIP内容
NeurIPS 2022接收论文列表发布,2600多篇论文都在这了!
专知会员服务
87+阅读 · 2022年9月17日
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
54+阅读 · 2020年11月3日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
72+阅读 · 2019年11月3日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
相关资讯
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
ACL 2022 主会长文论文分类整理
RUC AI Box
4+阅读 · 2022年4月20日
SIGIR 2022 | 推荐系统相关论文分类整理
RUC AI Box
6+阅读 · 2022年4月18日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
15+阅读 · 2021年7月14日
Arxiv
28+阅读 · 2021年5月17日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
21+阅读 · 2019年8月21日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
22+阅读 · 2018年8月30日
微信扫码咨询专知VIP会员