Trimming consists of cutting away parts of a geometric domain, without reconstructing a global parametrization (meshing). It is a widely used operation in computer aided design, which generates meshes that are unfitted with the described physical object. This paper develops an adaptive mesh refinement strategy on trimmed geometries in the context of hierarchical B-spline based isogeometric analysis. A residual a posteriori estimator of the energy norm of the numerical approximation error is derived, in the context of Poisson equation. The reliability of the estimator is proven, and the effectivity index is shown to be independent from the number of hierarchical levels and from the way the trimmed boundaries cut the underlying mesh. In particular, it is thus independent from the size of the active part of the trimmed mesh elements. Numerical experiments are performed to validate the presented theory.
翻译:Trimming 包括切除几何域的某些部分,而没有重建全球平衡(模拟) 。 它在计算机辅助设计中广泛使用, 产生与所述物理物体不相适应的模具。 本文在基于B- spline等分级的等分线等分线分析中, 开发了对三角形的适应性网格改进战略 。 在 Poisson 方程式中, 得出了数字近似误差能量规范的事后估计符 。 测算器的可靠性得到了证明, 效果指数被证明独立于等级级数和三角边界割断底网格的方式。 特别是, 它独立于三角网格元素的有效部分的大小 。 进行了数值实验, 以验证所提出的理论 。