Optimal feedback control (OFC) is a theory from the motor control literature that explains how humans move their body to achieve a certain goal, e.g., pointing with the finger. OFC is based on the assumption that humans aim to control their body optimally, within the constraints imposed by body, environment, and task. In this paper, we explain how this theory can be applied to understanding Human-Computer Interaction (HCI) in the case of pointing. We propose that the human body and computer dynamics can be interpreted as a single dynamical system. The system state is controlled by the user via muscle control signals, and estimated from observations. Between-trial variability arises from signal-dependent control noise and observation noise. We compare four different models from optimal control theory and evaluate to what degree these models can replicate movements in the case of mouse pointing. We introduce a procedure to identify parameters that best explain observed user behavior. To support HCI researchers in simulating, analyzing, and optimizing interaction movements, we provide the Python toolbox OFC4HCI. We conclude that OFC presents a powerful framework for HCI to understand and simulate motion of the human body and of the interface on a moment by moment basis.
翻译:最佳反馈控制( OFC) 是来自运动控制文献的理论, 解释人类如何移动身体以达到某一目标, 例如用手指指向。 OFC 所依据的假设是, 人类的目标是在身体、环境和任务的限制范围内, 优化控制自己的身体。 在本文中, 我们解释如何应用这一理论来理解人- 计算机互动( HCI) 指向 。 我们提议, 人体和计算机动态可以被解释为一个单一的动态系统。 系统状态由用户通过肌肉控制信号和观测估计来控制。 星际差异来自信号依赖控制噪音和观测噪音。 我们比较了四个不同的模型, 从最佳控制理论看, 并评估这些模型在鼠标指情况下能够复制运动的程度。 我们引入了一种程序, 以确定最能解释观察到用户行为的参数 。 为了支持 HCI 研究人员在模拟、 分析和优化互动运动中, 我们提供了 Python 工具箱 。 我们的结论是, IPC 提供了一个强大的框架, 以便HCI 能够理解和模拟人类身体的瞬间和界面。