Numerical solution of heterogeneous Helmholtz problems presents various computational challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness and scalability are key for practical and reliable solvers in large-scale applications, especially for large wave number problems. In this work we explore the use of a GenEO-type coarse space to build a two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free meshes, we observe robust convergence, iteration counts that do not increase with the wave number, and good scalability of our approach. We further provide results showing a favourable comparison with the DtN coarse space. Our numerical study shows promise that our solver methodology can be effective for challenging heterogeneous applications.
翻译:在计算上存在多种不同的Helmholtz问题的数字解决办法,其描述性理论仍然无法应用于许多流行方法。强健和可伸缩性是大规模应用中实用和可靠的解决问题者的关键,特别是对于大型波数问题。在这项工作中,我们探索使用GenEO型粗皮空间来建立一个适用于极不透明的Helmholtz问题的两级添加法Schwarz方法。通过对二维模型问题进行的一系列数字测试,在无污染的meshes上以有限的元素分解,我们观察到强大的趋同、不随波数增加的循环计算以及我们方法的良好可伸缩性。我们进一步提供了与DtN粗皮空间进行有利比较的结果。我们的数字研究表明,我们的求解方法可以有效地挑战多种应用。