Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.
翻译:具有等级结构的混合体椭圆方程式通常用于模拟高维比包含率的问题,例如断裂多孔介质的流量。我们根据功能性事后误差估计理论得出一般的抽象估计,保证原始和双重变量的上限和原始双向变量的双向界限。我们改进了功能性方法取得的抽象结果,根据近似解决办法具有保护特性的程度提出了四种不同的估计剩余误差的方法,即:(1) 没有保护,(2) 亚端保护,(3) 网格级保护,(4) 精确保护。当质量在网格一级或完全在网格一级得到保护时,这种处理的结果是更清晰和完全可比较的估计,其结构与基于网格的外层技术的类似。我们通过使用四种不同的合成问题离散方法进行数字实验,以及根据断裂多孔介质介质的流量基准应用,证明了我们的理论结果的实际效果。我们通过使用四种不同的合成问题数字实验,展示了我们理论结果的实际效果。