We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system+bath) is held in canonical thermal equilibrium by weak coupling with a "super-bath". Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long-range interaction systems.
翻译:我们描述一个数字算法,以近似平衡降密度矩阵和有效(平均力)汉密尔顿算法,当整个系统(System+bath)与“超光浴”相连接时,它与整个系统(System+bath)处于能量热平衡中时,它会与一套浴柱旋转紧密结合。我们的方法是通过微量估测器和Krylov子空间方法,将目前标准典型算法进行概括化,用以计算光量子系统观测量值的量值值。特别是,我们的算法利用了一个事实,即当用特定随机状态测量浴缸时,系统密度的下降往往集中于相应的热力平均减低系统密度。理论错误分析和数字实验是为了验证我们的算法的准确性。进一步的数字实验显示了我们方法的应用潜力,包括研究量级转换和长距离互动系统缠绕酶酶。