This paper proposes a numerical method based on the Adomian decomposition approach for the time discretization, applied to Euler equations. A recursive property is demonstrated that allows to formulate the method in an appropriate and efficient way. To obtain a fully numerical scheme, the space discretization is achieved using the classical DG techniques. The efficiency of the obtained numerical scheme is demonstrated through numerical tests by comparison to exact solution and the popular Runge-Kutta DG method results.
翻译:本文件建议采用基于Adomian分解法的数值方法,用于时间分解,适用于Euler方程式。递归属性证明能够以适当和有效的方式制定该方法。要获得完全数字法,则使用传统的DG技术实现空间分解。获得的数字法的效率通过数字测试与精确的解决方案和流行的Renge-Kutta DG方法结果进行比较来证明。