We consider M-estimation problems, where the target value is determined using a minimizer of an expected functional of a Levy process. With discrete observations from the Levy process, we can produce a "quasi-path" by shuffling increments of the Levy process, we call it a quasi-process. Under a suitable sampling scheme, a quasi-process can converge weakly to the true process according to the properties of the stationary and independent increments. Using this resampling technique, we can estimate objective functionals similar to those estimated using the Monte Carlo simulations, and it is available as a contrast function. The M-estimator based on these quasi-processes can be consistent and asymptotically normal.
翻译:我们考虑了测算M-估计问题,在确定目标值时,使用最小化的利维进程预期功能来确定目标值。通过利维进程的不同观测,我们可以通过对利维进程进行重排递增来产生“准路径 ” 。 我们称之为“准路径 ” 。 在适当的采样计划下, 准过程可以根据固定和独立递增的特性, 微弱地与真实过程汇合。 使用这种抽查技术, 我们可以估算与使用蒙特卡洛模拟估计的相似的目标功能, 并且可以作为对比功能。 基于这些准过程的M- 估计值可以保持一贯性, 并且无症状地正常 。