Numerical differentiation of a function, contaminated with noise, over the unit interval $[0,1] \subset \mathbb{R}$ by inverting the simple integration operator $J:L^2([0,1]) \to L^2([0,1])$ defined as $[Jx](s):=\int_0^s x(t) dt$ is discussed extensively in the literature. The complete singular system of the compact operator $J$ is explicitly given with singular values $\sigma_n(J)$ asymptotically proportional to $1/n$, which indicates a degree {\sl one} of ill-posedness for this inverse problem. We recall the concept of the degree of ill-posedness for linear operator equations with compact forward operators in Hilbert spaces. In contrast to the one-dimensional case with operator $J$, there is little material available about the analysis of the d-dimensional case, where the compact integral operator $J_d:L^2([0,1]^d) \to L^2([0,1]^d)$ defined as $[J_d\,x](s_1,\ldots,s_d):=\int_0^{s_1}\ldots\int_0^{s_d} x(t_1,\ldots,t_d)\, dt_d\ldots dt_1$ over unit $d$-cube is to be inverted. This inverse problem of mixed differentiation $x(s_1,\ldots,s_d)=\frac{\partial^d}{\partial s_1 \ldots \partial s_d} y(s_1,\ldots ,s_d)$ is of practical interest, for example when in statistics copula densities have to be verified from empirical copulas over $[0,1]^d \subset \mathbb{R}^d$. In this note, we prove that the non-increasingly ordered singular values $\sigma_n(J_d)$ of the operator $J_d$ have an asymptotics of the form $\frac{(\log n)^{d-1}}{n}$, which shows that the degree of ill-posedness stays at one, even though an additional logarithmic factor occurs. Some more discussion refers to the special case $d=2$ for characterizing the range $\mathcal{R}(J_2)$ of the operator $J_2$.
翻译:关于混合偏微分在d维单位立方体上的不适定程度的注记
翻译后的摘要:
在[0,1]区间上通过反演简单积分算子$J:L^2([0,1]) \to L^2([0,1])$对受噪声污染的函数进行数值微分的问题,在文献中得到广泛讨论。该紧算子$J$在单位线段上的完整奇异系统已经被明确给出,其奇异值$\sigma_n(J)$渐近无穷小于1/n,这表明了该逆问题的不适定程度为一。我们回顾了Hilbert空间中紧正算子线性算子方程的不适定度概念。与算子$J$的一维情况相比较,d维情况的分析材料甚少,其中紧积分算子$J_d:L^2([0,1]^d) \to L^2([0,1]^d)$定义为$[J_d\,x](s_1,\ldots,s_d):=\int_0^{s_1}\ldots\int_0^{s_d} x(t_1,\ldots,t_d)\, dt_d\ldots dt_1$在单位d-立方体上进行反演。该混合偏微分逆问题$x(s_1,\ldots,s_d)=\frac{\partial^d}{\partial s_1 \ldots \partial s_d} y(s_1,\ldots ,s_d)$在实践中具有重要意义,例如在统计学中,需要通过$[0,1]^d \subset \mathbb{R}^d$上的经验Copulas验证Copula密度。在本注记中,我们证明了非递增序列的奇异值$\sigma_n(J_d)$有形如$\frac{(\log n)^{d-1}}{n}$的渐近估计,这表明该不适定的程度仍然是一,即使出现了额外的对数因子。一些更多的讨论涉及特殊情况$d=2$来表征算子$ J_2 $的范围$\mathcal{R}(J_2)$。