项目名称: 幂零李群上热核估计的几个问题
项目编号: No.11201346
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 杨乔华
作者单位: 武汉大学
项目金额: 22万元
中文摘要: 本项目主要研究幂零李群上的热核估计以及以及带Hardy位势的热核估计问题,这里的位势函数将分别由 Koranyi范和Carnot-Caratheodory 距离构成,并受Hardy不等式控制。旨在非H型幂零李群上建立类似于Heisenberg群情形的热核估计;在一般的幂零李群上通过建立一系列关于Carnot-Caratheodory 距离的积分表示公式,来得到关于此距离的Hardy不等式以及最佳常数,并在此基础之上考虑带Hardy位势的热核估计问题。如果位势函数由Koranyi范构成,将利用Koranyi范在光滑性与欧式空间的距离相同这一事实,采用类似于欧式空间情形的做法;如果位势函数由Carnot-Caratheodory 距离构成,将通过群上热核的解析性质,利用Coulhon和Filippas等人创立的方法做相应的估计。
中文关键词: 幂零李群;Hardy不等式;Moser-Trudinger不等式;黎曼流形;Grushin算子
英文摘要: The aim of this project is to study the precise estimates for the heat kernel on nilpotent Lie groups with or without Hardy potential, where Hardy potential is associated with Carnot-Caratheodory distence and Koranyi norm and satisfies the Hardy inequality. We shall establish precise estimates for the heat kernel on some nilpotent Lie groups which is not H-type. Furthermore, this estimate will be similar to that on Heisenberg group. Next, we shall consider the Hardy inequality related to Carnot-Caratheodory distance and look for the sharp constants. The proof will depend on a series of integral representation formula. Once the Hardy inequality is established, we shall study the precise estimates for the heat kernel with Hardy potential. If the potential is associated Koranyi norm, the method we use will be similar to that on Eucleadean space. If the potential is associated Carnot-Caratheodory distance, the method will be similar to that of Coulhon et al and Filippas et al which depend on the analyticity of heat kernel.
英文关键词: nilpotent group;Hardy inequality;Moser-Trudinger inequality;Riemannian manifold;Grushin operator