In this paper, we consider the problems in the practical application of visual simultaneous localization and mapping (SLAM). With the popularization and application of the technology in wide scope, the practicability of SLAM system has become a new hot topic after the accuracy and robustness, e.g., how to keep the stability of the system and achieve accurate pose estimation in the low-texture and dynamic environment, and how to improve the universality and real-time performance of the system in the real scenes, etc. This paper proposes a real-time stereo indirect visual SLAM system, PLD-SLAM, which combines point and line features, and avoid the impact of dynamic objects in highly dynamic environments. We also present a novel global gray similarity (GGS) algorithm to achieve reasonable keyframe selection and efficient loop closure detection (LCD). Benefiting from the GGS, PLD-SLAM can realize real-time accurate pose estimation in most real scenes without pre-training and loading a huge feature dictionary model. To verify the performance of the proposed system, we compare it with existing state-of-the-art (SOTA) methods on the public datasets KITTI, EuRoC MAV, and the indoor stereo datasets provided by us, etc. The experiments show that the PLD-SLAM has better real-time performance while ensuring stability and accuracy in most scenarios. In addition, through the analysis of the experimental results of the GGS, we can find it has excellent performance in the keyframe selection and LCD.


翻译:在本文中,我们考虑了在实际应用视觉同步定位和绘图(SLAM)方面存在的问题。随着技术的广泛普及和应用,SLM系统的可行性在准确性和稳健性之后已成为一个新的热题,例如,如何保持系统的稳定性,在低文本和动态环境中实现准确的构成估计,如何在真实场景中改善系统的普遍性和实时性能,等等。本文件提出了实时立体间接视觉显示系统(SLD-SLAM)系统,该系统结合了点和线特征,避免了动态物体在高度动态环境中的影响。我们还提出了一种新的全球灰色相似算法,以达到合理的关键框架选择和高效的环闭检测(LCD)。 受益于GGS,PLD-SAM可以在不事先培训的情况下在大多数真实场景中实现实时的准确度估计。 为了核实拟议的系统的业绩,我们将其与现有的状态和工艺(SOTA)进行了比较,避免了动态环境高度动态环境中动态物体的影响。我们提出了一个新的全球灰色相似算法(GGGSIS),通过实时分析,我们通过SLSLSL提供了最准确性的业绩分析,我们通过SLA和MADA的准确性数据,我们通过SLA提供了最准确性能分析,通过SLDADA提供了更好的结果。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
17+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
17+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员