即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。

VIP内容

近年来,深度学习在更高层级的视觉任务中取得瞩目的成绩,如:物体识别,语义分割等。这些课题曾是传统视觉无法或很难解决的任务。深度学习方法的这种能力拓展了我们对视觉任务的想象空间,越来越多的 SLAM 开始在他们的框架中通过融合学习的方法来改进位姿估计的准确程度和环境重建的效果。但是深度学习是一个非常宽广的领域,和 SLAM 相关的课题只是它的一个分支,本书稿将会挑选、聚焦与 SLAM 相关的深度学习任务,希望能通过这本书稿来介绍SLAM 系统中使用的几何和深度学习的方法,帮助读者掌握最新的进展。

成为VIP会员查看完整内容
0
69

最新内容

With the wide penetration of smart robots in multifarious fields, Simultaneous Localization and Mapping (SLAM) technique in robotics has attracted growing attention in the community. Yet collaborating SLAM over multiple robots still remains challenging due to performance contradiction between the intensive graphics computation of SLAM and the limited computing capability of robots. While traditional solutions resort to the powerful cloud servers acting as an external computation provider, we show by real-world measurements that the significant communication overhead in data offloading prevents its practicability to real deployment. To tackle these challenges, this paper promotes the emerging edge computing paradigm into multi-robot SLAM and proposes RecSLAM, a multi-robot laser SLAM system that focuses on accelerating map construction process under the robot-edge-cloud architecture. In contrast to conventional multi-robot SLAM that generates graphic maps on robots and completely merges them on the cloud, RecSLAM develops a hierarchical map fusion technique that directs robots' raw data to edge servers for real-time fusion and then sends to the cloud for global merging. To optimize the overall pipeline, an efficient multi-robot SLAM collaborative processing framework is introduced to adaptively optimize robot-to-edge offloading tailored to heterogeneous edge resource conditions, meanwhile ensuring the workload balancing among the edge servers. Extensive evaluations show RecSLAM can achieve up to 39% processing latency reduction over the state-of-the-art. Besides, a proof-of-concept prototype is developed and deployed in real scenes to demonstrate its effectiveness.

0
0
下载
预览

最新论文

With the wide penetration of smart robots in multifarious fields, Simultaneous Localization and Mapping (SLAM) technique in robotics has attracted growing attention in the community. Yet collaborating SLAM over multiple robots still remains challenging due to performance contradiction between the intensive graphics computation of SLAM and the limited computing capability of robots. While traditional solutions resort to the powerful cloud servers acting as an external computation provider, we show by real-world measurements that the significant communication overhead in data offloading prevents its practicability to real deployment. To tackle these challenges, this paper promotes the emerging edge computing paradigm into multi-robot SLAM and proposes RecSLAM, a multi-robot laser SLAM system that focuses on accelerating map construction process under the robot-edge-cloud architecture. In contrast to conventional multi-robot SLAM that generates graphic maps on robots and completely merges them on the cloud, RecSLAM develops a hierarchical map fusion technique that directs robots' raw data to edge servers for real-time fusion and then sends to the cloud for global merging. To optimize the overall pipeline, an efficient multi-robot SLAM collaborative processing framework is introduced to adaptively optimize robot-to-edge offloading tailored to heterogeneous edge resource conditions, meanwhile ensuring the workload balancing among the edge servers. Extensive evaluations show RecSLAM can achieve up to 39% processing latency reduction over the state-of-the-art. Besides, a proof-of-concept prototype is developed and deployed in real scenes to demonstrate its effectiveness.

0
0
下载
预览
参考链接
父主题
子主题
Top
微信扫码咨询专知VIP会员