We present Human and Geometric Importance SLAM (HGI-SLAM), a novel approach to loop closure using salient and geometric features. Loop closure is a key element of SLAM, with many established methods for this problem. However, current methods are narrow, using either geometric or salient based features. We merge their successes into a model that outperforms both types of methods alone. Our method utilizes inexpensive monocular cameras and does not depend on depth sensors nor Lidar. HGI-SLAM utilizes geometric and salient features, processes them into descriptors, and optimizes them for a bag of words algorithm. By using a concurrent thread and combing our loop closure detection with ORB-SLAM2, our system is a complete SLAM framework. We present extensive evaluations of HGI loop detection and HGI-SLAM on the KITTI and EuRoC datasets. We also provide a qualitative analysis of our features. Our method runs in real time, and is robust to large viewpoint changes while staying accurate in organic environments. HGI-SLAM is an end-to-end SLAM system that only requires monocular vision and is comparable in performance to state-of-the-art SLAM methods.
翻译:我们提出了使用突出和几何特征环绕关闭的新办法,即人类和几何重要性SLAM(HGI-SLAM),这是利用突出和几何特征环绕关闭的一种新办法。环圈关闭是SLAM的一个关键要素,有许多已经确立的解决这一问题的方法。然而,目前的方法是狭窄的,使用几何或显著的特征。我们将其成功合并为一种优于两种方法的模型。我们的方法使用廉价的单色照相机,不依赖深度传感器或Lidar。HGI-SLAM(HGI-SLAM)利用了几何特征和突出特征,将它们加工成描述器,并优化了它们用于一包文字算法。通过同时使用一条线和用ORB-SLAM2来梳理我们的环圈关闭探测。我们的系统是一个完整的SLAM框架。我们对HGI环圈探测和HGI-SLAM(HI-SAM)在KITTI和EuRoC数据集上的数据集进行了广泛的评价。我们还对我们的特点进行了定性分析。我们的方法是实时运行,在有机环境中保持精确的极大观点变化。HGI-SLAM是一个仅需要单式视野的端至端系统系统。