Semantic segmentation is a challenging computer vision task demanding a significant amount of pixel-level annotated data. Producing such data is a time-consuming and costly process, especially for domains with a scarcity of experts, such as medicine or forensic anthropology. While numerous semi-supervised approaches have been developed to make the most from the limited labeled data and ample amount of unlabeled data, domain-specific real-world datasets often have characteristics that both reduce the effectiveness of off-the-shelf state-of-the-art methods and also provide opportunities to create new methods that exploit these characteristics. We propose and evaluate a semi-supervised method that reuses available labels for unlabeled images of a dataset by exploiting existing similarities, while dynamically weighting the impact of these reused labels in the training process. We evaluate our method on a large dataset of human decomposition images and find that our method, while conceptually simple, outperforms state-of-the-art consistency and pseudo-labeling-based methods for the segmentation of this dataset. This paper includes graphic content of human decomposition.
翻译:语义分解是一项具有挑战性的计算机愿景任务,需要大量像素级附加数据。生成这些数据是一个耗时费钱的过程,特别是对于缺乏专家的领域,如医学或法医人类学。虽然已经制定了许多半监督的办法,以便从有限的标签数据和大量未贴标签的数据中最大限度地发挥作用,但具体领域的现实世界数据集往往具有一些特点,既降低了现成最新方法的有效性,也为创造利用这些特征的新方法提供了机会。我们建议和评价一种半监督的方法,即通过利用现有相似点,重新使用未贴标签的数据集标签,同时在培训过程中以动态方式权衡这些再利用的标签的影响。我们评估了我们关于大型人类分解图像数据集的方法,发现我们的方法虽然在概念上简单,但不符合最新技术的一致性和以假标签为基础的方法来进行这一数据集的分解。本文包括人类分解的图形内容。