Traditional SLAM algorithms are typically based on artificial features, which lack high-level information. By introducing semantic information, SLAM can own higher stability and robustness rather than purely hand-crafted features. However, the high uncertainty of semantic detection networks prohibits the practical functionality of high-level information. To solve the uncertainty property introduced by semantics, this paper proposed a novel probability map based on the Gaussian distribution assumption. This map transforms the semantic binary object detection into probability results, which help establish a probabilistic data association between artificial features and semantic info. Through our algorithm, the higher confidence will be given higher weights in each update step while the edge of the detection area will be endowed with lower confidence. Then the uncertainty is undermined and has less effect on nonlinear optimization. The experiments are carried out in the TUM RGBD dataset, results show that our system improves ORB-SLAM2 by about 15% in indoor environments' errors. We have demonstrated that the method can be successfully applied to environments containing dynamic objects.


翻译:传统的 SLAM 算法通常以人为特征为基础, 缺乏高层次的信息。 通过引入语义信息, SLAM 可以拥有更高的稳定性和稳健性, 而不是纯手工制作的特征。 然而, 语义检测网络的高度不确定性使得高级信息无法发挥实际功能。 为解决语义学引入的不确定性属性, 本文根据高斯分布假设提出了一个新的概率图。 该地图将语义二进化对象检测转化为概率结果, 这有助于在人工特征和语义信息之间建立概率性数据关联。 通过我们的算法, 在每个更新步骤中将给予更高的可信度, 而检测区域的边缘将具有较低的信心。 然后不确定性被破坏, 对非线性优化效果较小。 实验在TUM RGBD 数据集中进行, 结果显示我们的系统在室内误差中将 ORB- SLAM2 改进了大约 15% 。 我们已经证明这种方法可以成功地应用于含有动态物体的环境 。

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员